
CPSC 340/540 Tutorial 5
Winter 2024 Term 1

Slides Credit: To various pervious TA’s of this course

Yi (Joshua) Ren
https://joshua-ren.github.io/

renyi.joshua@gmail.com
PhD with Danica

Machine Learning: 
Learning dynamics, LLM, Compositional Generalization

T1A: Tuesday 16:00-17:00; 
T1C: Thursday 10:00-11:00; 

Office Hour: Wednesday 15:00-16:00
Slides can be found at Piazza and my personal page after T1C.

More helpful on theory

Less helpful on coding

https://joshua-ren.github.io/
mailto:renyi.joshua@gmail.com


• Gradient Descent
• Robust Regression
• Some mid-term questions



Regression: (different regularizers)

• Recap of different norms

 L0-norm: non-zero elements in a vector 

 L1-norm: usually use to introduce sparsity (vertex at axis) 

 L2-norm: Gaussian, Euclidian distance, most common 

 L∞-norm: select the maximum value 

Unit ball, i.e., x 𝑝 = 1

Unit ball, p=0 to 2



Assignment 3 – 1.1

General tricks:
1. Recall the definition of norms, inner product, etc.
2. Consider diagnal matrix
3. Use 𝒓 = 𝑟1, … , 𝑟𝑛

𝑇; 𝑟𝑖 = 𝑤
𝑇𝑥𝑖 − 𝑦𝑖

𝒓 = 𝑿𝒘 − 𝒀

 

𝑖=1

𝑛

𝜆𝑖𝑥𝑖𝑥𝑖 = 𝐱
𝐓𝚲𝐱



Convexity: (basic facts)

• Intuition: • Definition: 

• Checking measurement: 

𝑓′′ > 0

Hessian matrix is PSD

• Good to know – Jensen’s Inequality

• Compose functions:

√  Norm, linear, sum, max, ... ? f(g()), multiplication, ... 



Gradient Descent: (what is GD)

𝒘𝒕+𝟏 = 𝒘𝒕 − 𝜶𝒕𝜵𝒘𝒇(𝒙)



Gradient Descent: (why we need GD?)

• More efficient when data is high-dim (inverse of a d*d matrix)

𝑤∗ = 𝑋𝑇𝑋 −1𝑋𝑇𝑦 𝑤𝑡+1 = 𝑤𝑡 − 𝛼𝑡𝑋𝑇 𝑋𝑤𝑡 − 𝑦

• Require too many assumptions

- 𝑋𝑇𝑋 might be non-invertable (e.g., 𝑛 < 𝑑 rank of it would be at most 𝑛)
- The problem must be convex to ensure 𝑤∗ is a good solution.

For GD, in deep learning, loss landscape like this ... Any reasonable good local optimum is good enough



Gradient Descent: (building blocks)

𝒘𝒕+𝟏 = 𝒘𝒕 − 𝜶𝒕𝜵𝒘𝒇(𝒙)

• Influence of learning rate – General facts:

OK to explain linear regression 
or simple problems



Gradient Descent: (building blocks)

Small LR
Large LR

• More subtle difference for deep learning:

- Think about, which case is better?

- More subtle influence of LR in deep learning - Usually in practice: different LR schedulers

𝒘𝒕+𝟏 = 𝒘𝒕 − 𝜶𝒕𝜵𝒘𝒇(𝒙)



Gradient Descent: (building blocks)

𝒘𝒕+𝟏 = 𝒘𝒕 − 𝜶𝒕𝜵𝒘𝒇(𝒙)
• Various a lot for different types of targets and networks. Chain rule is widely used. (One example in my paper)

• But implementation is suprisingly simple, thanks to Autogradient mechanism (e.g., in Pytorch)



Gradient Descent: (building blocks)

𝒘𝒕+𝟏 = 𝒘𝒕 − 𝜶𝒕𝜵𝒘𝒇(𝒙)

• Influence of the relative size of different dimension in 𝒘 (LR is too small for one dim, but too large for another dim) 

• Solution to it: layer-normalization (very common in deep learning) or adaptive LR method (e.g., Adam)



• Gradient Descent
• Robust Regression
• Some mid-term questions



Robust regression: standard solutions

• Facts:

• Why?

• How to solve it?



Robust regression: all about outliers, but is it indeed bad?

• In practice, long tail and Zipf’s law:

Hello electroencephalograph

They are rare, but not outliers, and should be very important!



• Gradient Descent
• Robust Regression
• Some mid-term questions



2017-Q1

Larger d  higher-dim input  Curse of dim, need more data  current data is not enough 
imagine only 1 data  seriously overfitting  ...

• But slighly increase d might be helpful sometimes (also 2D-3D).

Assign pseudo labels for downstream tasks; use the means as representation for the group (coreset selection);
different clusters for different experts; etc...



2017-Q1

Argmax v.s. Softmax
Stepwise v.s. Sigmoid Many good properties, easy-to-handle derivative, smooth, etc.

• When you have outliers.



Thanks for your time!
Questions?


