CPSC 340/540 Tutorial 5

Winter 2024 Term 1

T1A: Tuesday 16:00-17:00;
T1C: Thursday 10:00-11:00;
Office Hour: Wednesday 15:00-16:00
Slides can be found at Piazza and my personal page after T1C.
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Week 1: basic knowledge review

renvi.joshua@gmail.com
PhD with Danica

Tutorial 1 (T1D, T1F, T1G)

click to edit date

Slides for T1A and T1C click to edit date

Machine Learning:
Learning dynamics, LLM, Compositional Generalization
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Regression: (different regularizers) Unit ball, i.e., [Ix]], = 1
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FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shoun are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1| + |82| < t and 8% + B3 < t%, respectively,
while the red ellipses are the contours of the least squares error function.
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General tricks:
1. Recall the definition of norms, inner product, etc.
2. Consider diagnal matrix
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Convexity: (basic facts) -

* |ntuition: * Definition: %

Not convex tF (o) + (1 — 1) (22)

J{tey + (1 = t)as)

ftz + (1 —t)eg) <tf (x1) + (1 — 1) f (22)

Convex T
Y A
| | Y=9(X)
* Checking measurement: * Good to know — Jensen’s Inequality
resoon (B[X) < Blp(X)] =EY]. 0 )
Hessian matrix is PSD P =~ Ly = " p(EXY) 4
 Compose functions:
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V Norm, linear, sum, max, ... ? f(g()), multiplication, ...
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Gradient Descent: (what is GD)
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Gradient Descent: (why we need GD?)
w* = XTy witl = wt —atXT(Xwt — y)

* More efficient when data is high-dim (inverse of a d*d matrix)

— Normal equations cost O(nd? + d?).
— Gradient descent costs O(ndt) to run for ‘t’ iterations.

* Each of the ‘t" iterations costs O(nd).

* Require too many assumptions

- XTX might be non-invertable (e.g., n < d = rank of it would be at most n)
- The problem must be convex to ensure w” is a good solution.
For GD, in deep learning, loss landscape like this ... Any reasonable good local optimum is good enough




Gradient Descent: (building blocks)

* Influence of learning rate — General facts:

If at is too large gradient descent may not converge.
If at is too small gradient descent may be too slow.
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OK to explain linear regression
or simple problems
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Gradient Descent: (building blocks)

* More subtle difference for deep learning:

- Think about, which case is better?

Starting pr.

-

I_ocal minima

Large LR
Small LR

Global minima

- More subtle influence of LR in deep learning - Usually in practice: different LR schedulers

A 0.00010 A

loss

0.00008 A

low learning rate
0.00006 9
—
high learning rate 0.00004 4

0.00002 4

good learning rate

Y
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Gradient Descent: (building blocks)
Vwf(x)

* Various a lot for different types of targets and networks. Chain rule is widely used. (One example in my paper)
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e But implementation is suprisingly simple, thanks to Autogradient mechanism (e.g., in Pytorch)

class Net(nn.Module): net = Ne‘t()
def init (self):

super().__init__(Q)
self.convl = nn.Conv2d(3, 6, 5) optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
self.pool = nn.MaxPool2d(2, 2)
self.eonv2 = nn.Conv2d(6, 16, 5)
self.fel = nn.Lineax (16 % 5 % 5, 120)
self.fc2 = nn.Lineax(120, 84)
self.fc3 = nn.Lineax(84, 10)

criterion = nn.CrossEntropyloss()

inputs, labels = data

# zero the parameter gradients

def forward(self, x): optimizer.zero_grad()
x = self.pool(F.relu(self.convl(x)))
x = self.pool(F.relu(self.conv2(x))) # forward + backward + optimize

x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fcl(x))
x = F.relu(self.fc2(x)) [

outputs = net(inputs)
loss = critexrion(outputs, labels)
loss.backwaxd()

x = self.fe3(x)

return x optimizer.step()




Gradient Descent: (building blocks)

Wt

* Influence of the relative size of different dimension in w (LR is too small for one dim, but too large for another dim)

* Solution to it: layer-normalization (very common in deep learning) or adaptive LR method (e.g., Adam)



* Robust Regression



Robust regression: standard solutions

e Facts: * How to solve it?

Least Squares with Outliers :
— Common example is Huber loss:

* Squaring error shrinks small errors, and magnifies largg errors:
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Robust regression: all about outliers, but is it indeed bad?

Frequency of password

In practice, long tail and Zipf’s law:
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Fig. 1. The label distribution of a long-tailed dataset (e.g., the iNaturalist
species dataset @ with more than 8,000 classes). The head-class
feature space learned on these sampled is often larger than tail classes,
while the decision boundary is usually biased towards detrifiant clagaés.

They are rare, but not outliers, and should be very important!



* Some mid-term questions
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(d) What is the effect of the number of features d that our model uses on the two parts of the
fundamental trade-oft?

Larger d = higher-dim input = Curse of dim, need more data = current data is not enough -
imagine only 1 data = seriously overfitting -2 ...

e Butslighly increase d might be helpful sometimes (also 2D-3D).

—oov00 g6 0— # a0 2

(g) Besides finding a clustering of the data, what is another use of the k-means algorithm?

Assign pseudo labels for downstream tasks; use the means as representation for the group (coreset selection);
different clusters for different experts; etc...
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(j) In regression, what is a situation where we would want to minimize the L1-norm error

(|| Xw — y||1) instead of the least squares error (|| Xw — y||?)?
 When you have outliers.

Least Squares with Outliers

¢ Squaring error shrinks small errors, and magnifies largp errors:
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(k) Why would we want to approximate the Loo-norm error with the log-sum-exp function?

Argmax v.s. Softmax

Stepwise v.s. Sigmoid Many good properties, easy-to-handle derivative, smooth, etc.



Thanks for your time!
Questions?



