CPSC 340/540 Tutorial 4

Winter 2024 Term 1

T1A: Tuesday 16:00-17:00; T1C: Thursday 10:00-11:00;

Office Hour: Wednesday 15:00-16:00

Slides can be found at Piazza and my personal page after T1C.

piazza	CPSC 340 2024W1 -	Q & A	<u>Resources</u>
Tutorials	٥	Manual	ly sort using ≡
Tutorials		Date	
Tutorial 1 (T1D, T1F, T1G)	≡	click to	edit date
Slides for T1A and T1C	=	click to	edit date

Yi (Joshua) Ren

https://joshua-ren.github.io/ renyi.joshua@gmail.com PhD with Danica

Publications	
	Notes and TA
	Here are links for TA sessions of CPSC 340 (Machine Learning and Data Mining - Fall 2024):
	Week 1: basic knowledge review
	Week 1: basic knowledge review

Machine Learning: Learning dynamics, LLM, Compositional Generalization

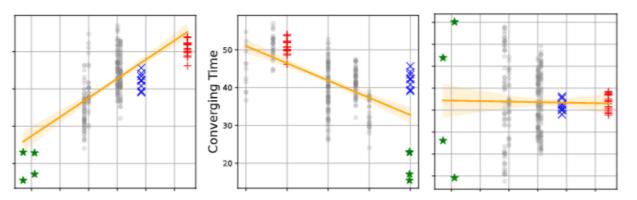
> More helpful on theory Less helpful on coding

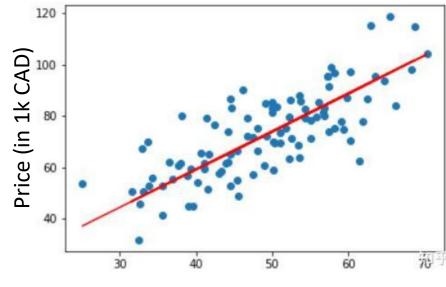
Slides Credit: To various pervious TA's of this course

- Linear Regression
- Some mid-term questions

Regression: (fundamentals)

- Sutiable tasks: if we want a model to
 - Predict a numerical value given features
 - Here is an apartment with $50m^2$, can you estimate its price?
 - Tom bought an apartment with 80k CAD, can you guess how big it is?
 - Find linear correlation relationship between two variables
 - Is the price of an apartment is influenced by its size?
 - What about the initial letter of the apartment's owner?





Size of the apartment (in m^2)

Correlation is not causality (switch X and Y, LR is similar)

Regression: (formulars, start from 1-d problem)

- The model, parameterized by w, makes prediction using: $\hat{y}_i = w \hat{x}_i$
- How good each prediction is is estimated using L2-distance: $\Gamma_i \approx \gamma_i^2 \gamma_i$
- The total residual for the training dataset:

$$f(w) = \sum_{i=1}^{2} (wx_i - y_i)^2$$

$$f(w) = \sum_{i=1}^{2} (wx_i - y_i)^2$$

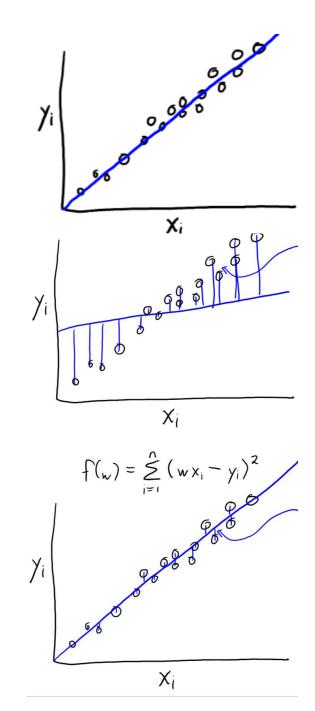
$$f(w) = \sum_{i=1}^{2} (yx_i - y_i)^2$$

$$f(w) = \sum_{i=1}^{2} (yx_i - y_i)^2$$

$$f(w) = \int_{i=1}^{2} (yx_i - y_i)^2$$

$$f(wx_i - y$$

• Our target is to find good *w* that makes residual for the test set small. To achieve this, minimize f(w) on training set.



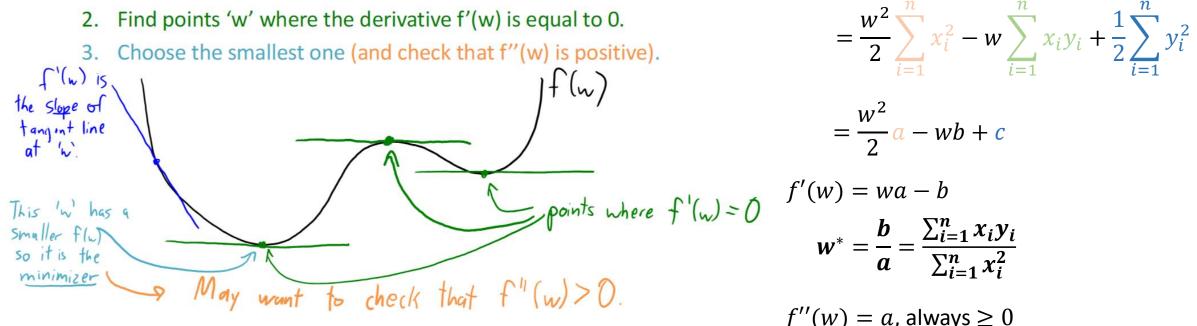
Regression: (solve it in closed-form, 1-dim)

Training a regression model is equivalently solving the following optimization problem: ٠

$$\min_{w} \frac{1}{2} \sum_{i=1}^{n} (wx_i - y_i)^2$$

 $f(x) = \frac{1}{2} \sum_{i=1}^{n} (wx_i - y_i)^2$

- Recap how we find the optimum solution for 1-d case: ٠
 - Take the derivative of 'f'. 1.
 - Find points 'w' where the derivative f'(w) is equal to 0.



Regression: (high-d, matrix form)

• Usually, \boldsymbol{x} is features rather than raw inputs, it might contains multiple dimensions:

$$\hat{y}_{i} = W_{1} X_{i1} + W_{2} X_{i2} \qquad \text{Value of feature 2} \text{ in example 'i'} \\ \text{"weight" of feature 1} \qquad \text{Value of feature 1} \text{ in example 'i'} \\ \hat{y}_{i} = W_{1} X_{i1} + W_{2} X_{i2} + W_{3} X_{i3} + \dots + W_{3} X_{id} \\ \end{array}$$

• We can **design different features**, recall our polynomial regression problem:

$$f = w_0 + w_1 x + w_2 x^2 + \dots + w_n x^n + k |W|_2^2 = W \begin{bmatrix} x^0 \\ \dots \\ x^n \end{bmatrix} + \frac{k}{|W|_2^2}$$

 \frown

• For notation conciseness, and also to better utilize math tools in linear algebra, we prefer matrix form

$$f(w_{1}, w_{2}, ..., w_{d}) = \hat{\xi}(\xi'_{1}w_{1}x_{1} - y_{1})^{2} \implies f(w) = ||\chi_{w} - \gamma||^{2}$$

Regression: (high-d, matrix form)

• Then for a high-dimension case, we extend derivative to gradients (stacking of partial derivatives)

$$\nabla f(w) = \begin{pmatrix} \frac{2f}{2w_1} \\ \frac{2f}{2w_2} \\ \vdots \\ \frac{2f}{2w_2} \\ \frac{2f}$$

• Set this gradient to 0 vector:

$$\nabla f(w) = 0 \quad (=)$$

$$\sum_{i=1}^{2} (\sum_{j=1}^{d} w_{j} x_{ij} - y_{i}) x_{i1} = 0$$

$$\sum_{i=1}^{2} (\sum_{j=1}^{d} w_{j} x_{ij} - y_{i}) x_{i2} = 0$$

$$\sum_{i=1}^{2} (\sum_{j=1}^{d} w_{j} x_{ij} - y_{i}) x_{id} = 0$$

 $f(w_{1}, w_{2}, ..., w_{d}) = \frac{1}{2} \sum_{i=1}^{2} \left(\sum_{j=1}^{d} w_{j} x_{ij} - y_{i} \right)^{2}$

Regression: (example: with L2 regularizer)

Express the following functions in terms of vectors, matrices, and norms (there should be no summations or maximums),

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} w_{j}^{2}$$

Recall, that all vectors are column-vectors,

 $\begin{array}{c} w_{j} \text{ is the scalar parameter } j. \\ y_{i} \text{ is the label of example } i. \\ x_{i} \text{ is the column-vector of features for example } i. \\ \end{array} \quad w = \left| \begin{array}{c} w_{1} \\ w_{2} \\ \vdots \\ w_{d} \end{array} \right|, \quad y = \left| \begin{array}{c} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{array} \right|, \quad x_{i} = \left| \begin{array}{c} x_{1}^{i} \\ x_{2}^{i} \\ \vdots \\ x_{d}^{i} \\ \vdots \\ x_{d}^{i} \end{array} \right|$

Let's first focus on the regularization term,

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} w_{j}^{2}$$

Recall the definition of inner product and L2-norm of vectors,

$$\|v\| = \sum_{j=1}^{d} v_j^2 \quad u^T v = \sum_{j=1}^{d} u_j v_j$$

Hence, we can write the regularizer in various forms using,

$$\|w\|^2 = \sum_{j=1}^d w_j^2 = \sum_{j=1}^d w_j w_j = w^T w_j$$

Let's next focus on the least squares term,

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} w_{j}^{2}$$

Let's define the residual vector r with elements

$$r_i = w^T x_i - y_i$$

We can write the least squares term as squared L2-norm of residual,

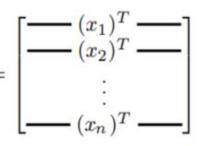
$$\sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} = \sum_{i=1}^{n} r_{i}^{2} = r^{T} r = ||r||^{2}$$

4

Let's next focus on the least squares term,

$$f(w) = \frac{1}{2} ||r||^2 + \frac{\lambda}{2} ||w||^2, \quad r_i = w^T x_i - y_i$$

X denotes the matrix containing the x_i (transposed) in the rows: $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T$ Using $w^T x_i = (x_i)^T w$ and the definitions of r, y, and X:



$$r = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix} = \begin{bmatrix} w^T x_1 - y_1 \\ w^T x_2 - y_2 \\ \vdots \\ w^T x_n - y_n \end{bmatrix} = \begin{bmatrix} (x_1)^T w \\ (x_2)^T w \\ \vdots \\ (x_n)^T w \end{bmatrix} - \underbrace{\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}}_{y} = \underbrace{\begin{bmatrix} (x_1)^T \\ (x_2)^T \\ \vdots \\ (x_n)^T \end{bmatrix}}_{X} w - y = Xw - y$$

Therefore $f(w) = \frac{1}{2} ||Xw - y||^2 + \frac{\pi}{2} ||w||^2$,

A quadratic function is a function of the form

$$f(w) = \frac{1}{2}w^T A w + b^T w + y_i$$

for a square matrix A, vector b, and scalar y.

Write the minimizer of the following function as a system of linear equations, using vector/matrix notation.

$$f(w) = \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2,$$

minimize convex functions, it is sufficient to find w s.t

$$f(w)=0.$$

Convert to vector/matrix form:

$$f(w) = \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^{2} = \frac{1}{2} (Xw - y)^T (Xw - y) + \frac{\lambda}{2} w^T w$$
$$\to f(w) = \frac{1}{2} w^T X^T X w - w^T X^T y + \frac{1}{2} y^T y + \frac{\lambda}{2} w^T w$$

Find w such that f'(w) = 0:

$$f'_{J}(w) = X^T X w - X^T y + \lambda w = 0 \rightarrow (X^T X + \lambda I) w = X^T y$$

Note f(w) is a column vector with dimension $d \times 1$.

•
$$f(w) = a^{\dagger} w$$

•
$$\nabla_w f(w) = a$$

•
$$\nabla^2_w f(w) = 0$$

•
$$f(w) = w^{\top}Aw$$

- $\nabla_w f(w) = (A^\top + A)w$
- $\nabla^2_w f(w) = (A^\top + A)$ (=

> When $\lambda = 0$, compare the following two forms:

$$f(x) = \frac{1}{2} \sum_{i=1}^{n} (wx_i - y_i)^2$$
$$w^* = \left(\sum_{i=1}^{n} x_i^2\right)^{-1} \left(\sum_{i=1}^{n} x_i y_i\right)^2$$

$$f(x) = \frac{1}{2} \|Xw - y\|_2^2$$

$$w^* = (X^T X)^{-1} X^T y$$

More convinent if you know how to compute matrix derivatives.

The Matrix Cookbook

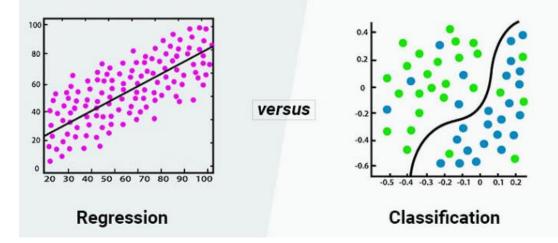
[http://matrixcookbook.com]

Kaare Brandt Petersen Michael Syskind Pedersen

VERSION: NOVEMBER 15, 2012

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Regression: (v.s. Classification)



- Similarities:
 - Both are supervised learning: x is dataset, y is label, model $y = h_w(x)$, parameterized by w
 - Almost identical expression for linear model: y = Xw

► L2 can be used as a default loss function:
$$\mathcal{L}(h_w(x), \bar{y}) = \frac{1}{2} ||Xw - \bar{y}||_2^2 + r(w)$$

- Differences Output part:
 - ▶ Regression: $\overline{y} \in \mathbb{R}$, $y_1 > y_2$ means sth., $y_1 + y_2$ means sth.
 - ▶ Classification: $\overline{y} \in [K]$, $y_1 > y_2$ or $y_1 + y_2$ means NOTHING
 - \blacktriangleright Regression: $h_w \in \mathbb{R}$, usually the same space as \overline{y} , then L2 loss is a reasonable measurement
 - Classification: output can be a distribution $h_w = p(y|x) \in [0,1]^K$, L2 loss works, but not the best usually not the same space as $\overline{y} \in [K]$, one-hot encoding is usually applied

Regression: (v.s. Classification)

- Interchangable:
 - > A regression task can also be solved using a classification framework:
 - **Discretize**, e.g., age \rightarrow {age<20, 20<age<30, age>30}
 - Can introduce non-convexity, e.g., age \rightarrow {age<20 or age>30, 20<age<30}
 - > A classification can also be solved using a regression framework (L2-loss):
 - Use **one-hot encoding** to convert label to a distribution
 - Directly use L2 loss
 - Use **argmax** when making predictions
 - Usually the default setting for the last layer of a DNN

Regression: (different regularizers)

- Recap of different norms
 - L0-norm: non-zero elements in a vector
 - L1-norm: usually use to introduce sparsity (vertex at axis)
 - L2-norm: Gaussian, Euclidian distance, most common
 - \blacktriangleright L ∞ -norm: select the maximum value

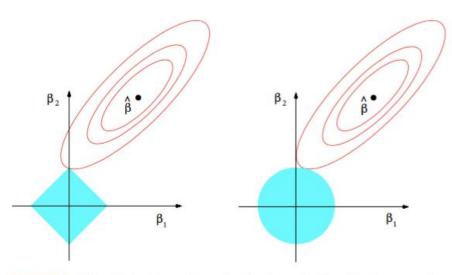
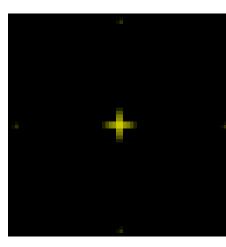


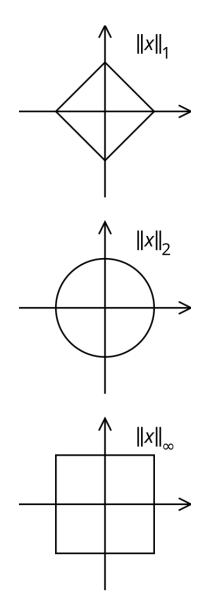
FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Unit ball, p=0 to 2

 $\|\mathbf{x}\|_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$



Unit ball, i.e.,
$$\|\mathbf{x}\|_p = 1$$



Thanks for your time! Questions?