CPSC 340/540 Tutorial 4

Winter 2024 Term 1

T1A: Tuesday 16:00-17:00;
T1C: Thursday 10:00-11:00;
Office Hour: Wednesday 15:00-16:00
Slides can be found at Piazza and my personal page after T1C.

plazza CPSC 340 2024W1-~- Q&A Resources .
Yi (Joshua) Ren
Tutorials ® Manually sort using = Notes and TA
Tutorials Date htt DS ://I OS h u a - re n : g It h u b : I O/ « Here are links for TA sessions of CPSC 340 (Machine Learning and Data Mining - Fall 2024):

Week 1: basic knowledge review
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Machine Learning:
Learning dynamics, LLM, Compositional Generalization

More helpful on theory

Slides Credit: To various pervious TA’s of this course Less helpful on coding
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* Linear Regression



Regression: (fundamentals)

o Sutiable tasks: if we want a model to

» Predict a numerical value given features

* Hereis an apartment with 50m?, can you estimate its price?
* Tom bought an apartment with 80k CAD, can you guess

how big it is?

» Find linear correlation relationship between two variables
* |sthe price of an apartment is influenced by its size?
* What about the initial letter of the apartment’s owner?
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»  Correlation is not causality (switch Xand Y, LR is similar)




Regression: (formulars, start from 1-d problem)
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The model, parameterized by w, makes prediction using: >/,' = WX,
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How good each prediction is is estimated using L2-distance: [ = /i
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Our target is to find good w that makes residual for the test set small.
To achieve this, minimize f(w) on training set.
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Regression: (solve it in closed-form, 1-dim)

Training a regression model is equivalently solving the following optimization problem:
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Regression: (high-d, matrix form)

 Usually, x is features rather than raw inputs, it might contains multiple dimensions:
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We can design different features, recall our polynomial regression problem:
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 For notation conciseness, and also to better utilize math tools in linear algebra, we prefer matrix form
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Regression: (high-d, matrix form)

 Then for a high-dimension case, we extend derivative to gradients (stacking of partial derivatives)
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Regression: (example: with L2 regularizer)

Express the following functions in terms of vectors, matrices, and norms
(there should be no summations or maximums),

n d
1 A
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Recall, that all vectors are column-vectors,
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w; is the scalar parameter j. wq Y4 T
yi is the label of example /. wo Y, Ifz
x; is the|column-vector of features for example i. w = .1y Y= 1.1 #&H=
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Regression: (matrix form and with L2 regularizer)

Let’s first focus on the regularization term,
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Recall the definition of inner product and L2-norm of vectors,
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Hence, we can write the reqgularizer in various forms using,
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Regression: (matrix form and with L2 regularizer)

Let’s next focus on the least squares term,
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Let’s define the residual vector r with elements

We can write the least squares term as squared L2-norm of residual,
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Regression: (matrix form and with L2 regularizer)

Let’s next focus on the least squares term,
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Regression: (matrix form and with L2 regularizer)

A quadratic function is a function of the form

fw) = %WTAW + bTw +y,

for a square matrix A, vector b, and scalar y.

Write the minimizer of the following function as a system of linear equations, using
vector/matrix notation.

1 A
flw) = 5||XW — y|l* + E”WHZI

"minimize convex functions, it is sufficient to find w s.t
f(w)=0.



Regression: (matrix form and with L2 regularizer)

Convert to vector/matrix form:

0= 2w = yl12 + 2wl 300070 -2 43w

1 i A
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Find w such that f' (w) = 0: ° f(W) =av
f'W=XTXw-=-XTy+Aw=0->XTX +AIw=X"y e V,f(w)=a
Note f(w) is a column vector with dimension d x 1. e V2f(w)=0



Regression: (matrix form and with L2 regularizer)

» When A = 0, compare the following two forms:

f(x)
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More convinent if you know how to compute matrix derivatives.

The Matrix Cookbook

[ http://matrixcookbook.com ]
Kaare Brandt Petersen
Michael Syskind Pedersen
VERSION: NOVEMBER 15, 2012

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf



Regression: (v.s. Classification)
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. Similarities: Regression Classification

» Both are supervised learning: x is dataset, y is label, model y = h,,(x), parameterized by w

» Almost identical expression for linear model: y = Xw

>

L2 can be used as a default loss function: L(h,,(x),y) = % ||XW — 37||2 + r(w)

« Differences — Output part:

>

>
>
>

Regression: ¥ € R, y; > y, means sth., y; + y, means sth.
Classification: y € [K], y; > y, or y; + y, means NOTHING

Regression: h,, € R, usually the same space as y, then L2 loss is a reasonable measurement
Classification: output can be a distribution h,, = p(y|x) € [0,1]¥, L2 loss works, but not the best
usually not the same space as y € [K|, one-hot encoding is usually applied



Regression: (v.s. Classification)

* Interchangable:

» Avregression task can also be solved using a classification framework:
» Discretize, e.g., age 2 {age<20, 20<age<30, age>30}
e Canintroduce non-convexity, e.g., age =2 {age<20 or age>30, 20<age<30}

» A classification can also be solved using a regression framework (L2-loss):
* Use one-hot encoding to convert label to a distribution
e Directly use L2 loss

* Use argmax when making predictions

» Usually the default setting for the last layer of a DNN



Regression: (different regularizers) Unit ball, i.e., [Ix]], = 1
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> LO-norm: non-zero elements in a vector

L1-norm: usually use to introduce sparsity (vertex at axis)
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FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shoun are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1| + |82| < t and 8% + B3 < t%, respectively,
while the red ellipses are the contours of the least squares error function.




Thanks for your time!
Questions?



