CPSC 340/540 Tutorial 3

Winter 2024 Term 1

T1A: Tuesday 16:00-17:00; T1C: Thursday 10:00-11:00;

Office Hour: Wednesday 15:00-16:00

Slides can be found at Piazza and my personal page after T1C.

Yi (Joshua) Ren

<https://joshua-ren.github.io/> renyi.joshua@gmail.com PhD with Danica

Publications Notes and TA Here are links for TA sessions of CPSC 340 (Machine Learning and Data Mining - Fall 2024) Week 1: basic knowledge review

Machine Learning: Learning dynamics, LLM, Compositional Generalization

> More helpful on theory Less helpful on coding

Slides Credit: To various pervious TA's of this course

- Ensemble Methods
- K-means and Expectation-Maximization
- Recap of Part 1 (supervised learning)

Ensemble Methods (intro)

- They have interesting names:
	- Averaging.
	- Blending.
	- Boosting.
	- Bootstrapping.
	- Bagging.
	- Cascading.
	- Random Forests.
	- Stacking.
	- Voting.
- Not only popular for Kaggle, but also very popular in SOTA deep learning systems, e.g., **Mixture of Experts (MoE) in ChatGPT**

Merge the predictions of different models

Input Features

Ρ @爱吃野鯉関町蟷螂

Ensemble Methods (why and when they works)

• Voting and stacking (parallel & sequential)

- \triangleright It is less likely that all models make wrong predictions together.
- \triangleright But, note the following facts:
	- We need **independence** of different models (sub-sample different features, use different models)
	- **Almost impossible to achieve independence** (since the dataset is fixed)
	- The basic idea can be generalize to many applications (**Multi-mode (Interesting example)**, MoE, etc.)
- $-$ P(2 rights, 1 wrong) = $3*0.8^2(1-0.8) = 0.384$.
- $P(1$ right, 2 wrongs) = $3*(1-0.8)^{2}0.8 = 0.096$.
- P(all 3 wrong) = $(1-0.8)^3$ = 0.008.
- So ensemble is right with probability 0.896

Types and Goals of Ensemble Methods

- Remember the fundamental trade-off:
	- 1. E_{train}: How small you can make the training error. **Capacity** VS.
	- 2. E_{gap} : how close training error is to test error.
- Goal of ensemble methods is that meta-classifier:
	- Does much better on one of these than individual classifiers.
	- Does not do too much worse on the other.
- This suggests two types of ensemble methods:
	- 1. Averaging: improves generalization gap of classifiers with high E_{gap}.
		- This is the point of "voting".
	- 2. Boosting: improves training error of classifiers with high E_{train}.
		- Covered later in course.

Individual model underfit (not capable enough), boosting them can increase the equivalent capacity.

Although overfit in different ways, averaging them can mitigate that.

Generalization

K-means (Unsupervised learning)

- Supervised learning:
	- We have features x_i and class labels y_i .
	- Write a program that produces y_i from x_i .
- Unsupervised learning:
	- We only have x_i values, but no explicit target labels.
	- You want to do "something" with them.
- Some unsupervised learning tasks:
	- Outlier detection: Is this a 'normal' x_i ?
	- Similarity search: Which examples look like this x_i ?
	- Association rules: Which x^{j} occur together?
	- Latent-factors: What 'parts' are the x_i made from?
	- Data visualization: What does the high-dimensional X look like?
	- Ranking: Which are the most important x_i ?

- Clustering: What types of x_i are there?

Bayesian: $p(\mathbf{x}_i|\mathbf{y}_i)$, also other generation models DNN: $p(\mathbf{y}_i|\mathbf{x}_i)$, end2end, use the data more efficient

Self-supervised learning:

Very common way to get good representations

- GPT
- Diffusion model
- Variational autoencoder (VAE)
- Generative adversarial network (GAN)

K-means (Goal)

• In clustering we want to assign examples to "groups":

K-means (Shape of Clusters)

- Recall that k-means assigns cluster based on nearest mean. \bullet
- This leads to partitions the space :

• Why must be convex? An intuitive proof.

• There are many other clustering methods who can provide non-convex shapes (Bottom-up based, density based, etc.)

K-means (Influence of initialization)

• K-means++, select starting point as **sparse** as possible (further sample with higher prob.)

K-means (Theoretical Understanding)

- A special case of **Gaussian Mixture Model (GMM)**
- Guarantee to converge when problem is convex
- Algorithm is called **Expectation-maxmization (EM) algorithm**

- Task: estimate $\theta = [\mu_1, ..., \mu_K, \sigma_1, ..., \sigma_K]$ that maximize the likelihood for all given examples $\log P(\mathbf{x}; \theta)$
- E-step: choose **assignment** to maximize likelihood In K-means, assign each sample a closest mean
- **M-step: re-calculate θ** based on assignments In K-means, calculate the new mean
- Repeat to converge
- Jensen provides the guarantee for loss decreasing.

Recap of Part 1:

- Fundamental ideas:
	- Training vs. test error (memorization vs. learning).
	- IID assumption (examples come(independently)
	- Key principle: test set should not influence training.
	- Fundamental trade-off (between training error vs. generalization gap).
	- Validation sets and cross-validation (can approximate test error) \sim
	- Optimization bias (we can overfit the training set and the validation set).
	- Decision theory (we should consider costs of predictions).
	- Parametric vs. non-parametric (whether model size depends on 'n').
	- No free lunch theorem (there is no universally "best" model).

Model Complexity otherwise same as one sample \checkmark otherwise no reason to generalize

Error

 \checkmark Under/over-fit

 \checkmark Variance bias trade-off

- If so, need another clean test set
- Use it to select hyper-parameters
- \checkmark Less #validation samples OR more trials \rightarrow more bias
- KNN v.s. Naive Bayes (what is parameter, what is hyper)
- Need uniform data assumption, which is usually not the case

Recap of Part 1: Key concepts

- We saw 3 ways of "learning":
	- Searching for rules.
		- Decision trees (greedy recursive splitting using decision stumps).
	- Counting frequencies.
		- . Naïve Bayes (probabilistic classifier based on conditional independence).
	- Measuring distances.
		- K-nearest neighbours (non-parametric classifier based on distances).
- We saw 2 generic ways of improving performance:
	- Encouraging invariances with data augmentation.
	- Ensemble methods (combine predictions of several models).
		- Random forests

Recap of Part 1: Decision trees – why we use "information gain" instead of accuracy

• Build stump by using the **mode** for each split

information gain = entropy (y) -
$$
\frac{n_{left|entropy(y) - np_{left|}}{n_{left|entropy(y) - np_{left|}}}\right|
$$
 (y_{left|}) - $\frac{n_{left|obj(y) - np_{right|}}{n_{left|}}\right|$
Entropy of labels

- Obviously, x>2.2 is better than x>3.1
- But both of the following 2 stumps provide the same accuracy
- However, their info gain is different:
	- For 2.2: IG = entropy(y) $-$ xxx, which is **greater than 0**
	- For $3.1:$ IG = 0

Recap of Part 1: Key concepts

- We saw 3 ways of "learning":
	- Searching for rules.
		- Decision trees (greedy recursive splitting using decision stumps).
	- Counting frequencies.
		- · Naïve Bayes (probabilistic classifier based on conditional independence).
	- Measuring distances.
		- K-nearest neighbours (non-parametric classifier based on distances).
- We saw 2 generic ways of improving performance:
	- Encouraging invariances with data augmentation.
	- Ensemble methods (combine predictions of several models).
		- Random forests

Step1: get data using BofW Step2: calculate $p(\mathbf{y}_i = 1 | \mathbf{x}_i) > p(\mathbf{y}_i = 0 | \mathbf{x}_i)$ using a. Bayesian and get $\frac{p(\mathbf{x}_i|\mathbf{y}_i)p(\mathbf{y}_i)}{p(\mathbf{x}_i)}$ $p(\mathbf{x}_i)$ b. Eliminate $p(\mathbf{x}_i)$ for both sides c. Calculate $p(\mathbf{y}_i)$ by counting d. Approximate $p(\mathbf{x}_{i1}, \mathbf{x}_{i2}, ..., \mathbf{x}_{iB}|\mathbf{y}_i) \approx$ $\prod_{b=1}^B$ $p(\mathbf{x}_{ib}|\mathbf{y}_i$ e. Calculate each $p(\mathbf{x}_{ib}|\mathbf{y}_i)$ by counting

- Use label smoothing if necessary
- g. Use n -gram BofW if necessary
- h. Use log -prob if necessary

Recap of Part 1: Key concepts • Hyper-parameter and bias-variance tradeoff

and $\sum_{n=2, k=1}^{\infty}$

- We saw 3 ways of "learning":
	- Searching for rules.
		- Decision trees (greedy recursive splitting using decision stumps).
	- Counting frequencies.
		- . Naïve Bayes (probabilistic classifier based on conditional independence
	- Measuring distances.
		- Curse of dimensionality and low-dim manifold
• K-nearest neighbours (non-parametric classifier based on distances).)
- We saw 2 generic ways of improving performance:
	- Encouraging invariances with data augmentation.
	- Ensemble methods (combine predictions of several models).
		- Random forests

Thanks for your time! Questions?