CPSC 340/540 Tutorial 3

Winter 2024 Term 1

T1A: Tuesday 16:00-17:00; T1C: Thursday 10:00-11:00;

Office Hour: Wednesday 15:00-16:00

Slides can be found at Piazza and my personal page after T1C.

ριαzza	CPSC 340 2024W1 -	Q & A	<u>Resources</u>
Tutorials	٥	Manual	ly sort using \equiv
Tutorials		Date	
Tutorial 1 (T1D, T1F, T1G)	≡	click to	edit date
Slides for T1A and T1C	=	click to	edit date

Yi (Joshua) Ren

https://joshua-ren.github.io/ renyi.joshua@gmail.com PhD with Danica

Publications	
	Notes and TA
	Here are links for TA sessions of CPSC 340 (Machine Learning and Data Mining - Fall 2024):
	Week 1: basic knowledge review

Machine Learning: Learning dynamics, LLM, Compositional Generalization

> More helpful on theory Less helpful on coding

Slides Credit: To various pervious TA's of this course

- Ensemble Methods
- K-means and Expectation-Maximization
- Recap of Part 1 (supervised learning)

Ensemble Methods (intro)

- They have interesting names: ``
 - Averaging.
 - Blending.
 - Boosting.
 - Bootstrapping.
 - Bagging.
 - Cascading.
 - Random Forests.
 - Stacking.
 - Voting.
- Not only popular for Kaggle, but also very popular in SOTA deep learning systems, e.g., Mixture of Experts (MoE) in ChatGPT

Merge the predictions of different models

Input Features

Ensemble Methods (why and when they works)

• Voting and stacking (parallel & sequential)

- > It is **less likely** that all models make wrong predictions together.
- > But, note the following facts:
 - We need independence of different models (sub-sample different features, use different models)
 - <u>Almost impossible to achieve independence</u> (since the dataset is fixed)
 - The basic idea can be generalize to many applications (Multi-mode (Interesting example), MoE, etc.)

- $P(2 \text{ rights}, 1 \text{ wrong}) = 3*0.8^2(1-0.8) = 0.384.$
- $P(1 \text{ right}, 2 \text{ wrongs}) = 3^*(1-0.8)^2 0.8 = 0.096.$
- $P(all 3 wrong) = (1-0.8)^3 = 0.008.$
- So ensemble is right with probability 0.896

Types and Goals of Ensemble Methods

- Remember the fundamental trade-off:
 - 1. E_{train}: How small you can make the training error. Capacity vs.
 - 2. E_{gap}: how close training error is to test error.
- Goal of ensemble methods is that meta-classifier:
 - Does much better on one of these than individual classifiers.
 - Does not do too much worse on the other.
- This suggests two types of ensemble methods:
 - 1. Averaging: improves generalization gap of classifiers with high E_{gap}.
 - This is the point of "voting".
 - 2. Boosting: improves training error of classifiers with high E_{train}.
 - Covered later in course.

Individual model underfit (not capable enough), boosting them can increase the equivalent capacity.

Although overfit in different ways, averaging them can mitigate that.

Generalization

K-means (Unsupervised learning)

- Supervised learning:
 - We have features x_i and class labels y_i.
 - Write a program that produces y_i from x_i.
- Unsupervised learning:
 - We only have x_i values, but no explicit target labels.
 - You want to do "something" with them.
- Some unsupervised learning tasks:
 - Outlier detection: Is this a 'normal' x_i?
 - Similarity search: Which examples look like this x_i?
 - Association rules: Which x^j occur together?
 - Latent-factors: What 'parts' are the x_i made from?
 - Data visualization: What does the high-dimensional X look like?
 - Ranking: Which are the most important x_i?

– Clustering: What types of x_i are there?

Bayesian: $p(\mathbf{x}_i | \mathbf{y}_i)$, also other generation models DNN: $p(\mathbf{y}_i | \mathbf{x}_i)$, end2end, use the data more efficient

Self-supervised learning:

Very common way to get good representations

- GPT
- Diffusion model
- Variational autoencoder (VAE)
- Generative adversarial network (GAN)

K-means (Goal)

• In clustering we want to assign examples to "groups":

K-means (Shape of Clusters)

- Recall that k-means assigns cluster based on nearest mean.
- This leads to partitions the space :

• Why must be convex? An intuitive proof.

• There are many other clustering methods who can provide non-convex shapes (Bottom-up based, density based, etc.)

K-means (Influence of initialization)

• K-means++, select starting point as **sparse** as possible (further sample with higher prob.)

K-means (Theoretical Understanding)

- A special case of Gaussian Mixture Model (GMM)
- Guarantee to converge when problem is convex
- Algorithm is called **Expectation-maxmization (EM) algorithm**

- Task: estimate $\theta = [\mu_1, ..., \mu_K, \sigma_1, ..., \sigma_K]$ that maximize the likelihood for all given examples $\log P(\mathbf{x}; \theta)$
- E-step: choose assignment to maximize likelihood
 In K-means, assign each sample a closest mean
- M-step: re-calculate θ based on assignments
 In K-means, calculate the new mean
- Repeat to converge
- Jensen provides the guarantee for loss decreasing.

Recap of Part 1:

- Fundamental ideas:
 - Training vs. test error (memorization vs. learning).
 - IID assumption (examples come independently from same distribution).
 - Key principle: test set should not influence training -
 - Fundamental trade-off (between training error vs. generalization gap).
 - Validation sets and cross-validation (can approximate test error) -
 - Optimization bias (we can overfit the training set and the validation set).
 - Decision theory (we should consider costs of predictions).
 - Parametric vs. non-parametric (whether model size depends on 'n').
 - No free lunch theorem (there is no universally "best" model).

✓ otherwise same as one sample
 ✓ otherwise no reason to generalize

Errol

✓ Under/over-fit

✓ Variance bias trade-off

- $\checkmark\,$ If so, need another clean test set
- ✓ Use it to select hyper-parameters
- ✓ Less #validation samples OR more trials → more bias
- KNN v.s. Naive Bayes
 (what is parameter, what is hyper)
- ✓ Need uniform data assumption, which is usually not the case

Recap of Part 1: Key concepts

- We saw 3 ways of "learning":
 - Searching for rules.
 - Decision trees (greedy recursive splitting using decision stumps).
 - Counting frequencies.
 - Naïve Bayes (probabilistic classifier based on conditional independence).
 - Measuring distances.
 - K-nearest neighbours (non-parametric classifier based on distances).
- We saw 2 generic ways of improving performance:
 - Encouraging invariances with data augmentation.
 - Ensemble methods (combine predictions of several models).
 - Random forests

Recap of Part 1: Decision trees – why we use "information gain" instead of accuracy

• Build stump by using the **mode** for each split

- Obviously, x>2.2 is better than x>3.1
- But both of the following 2 stumps provide the same accuracy
- However, their info gain is different:
 - For 2.2: IG = entropy(y) xxx, which is greater than 0
 - For 3.1: IG = 0

Recap of Part 1: Key concepts

- We saw 3 ways of "learning":
 - Searching for rules.
 - Decision trees (greedy recursive splitting using decision stumps).
 - Counting frequencies.
 - Naïve Bayes (probabilistic classifier based on conditional independence).
 - Measuring distances.
 - K-nearest neighbours (non-parametric classifier based on distances).
- We saw 2 generic ways of improving performance:
 - Encouraging invariances with data augmentation.
 - Ensemble methods (combine predictions of several models).
 - Random forests

Step1: get data using BofW Step2: calculate $p(\mathbf{y}_i = 1 | \mathbf{x}_i) > p(\mathbf{y}_i = 0 | \mathbf{x}_i)$ using a. Bayesian and get $\frac{p(\mathbf{x}_i | \mathbf{y}_i) p(\mathbf{y}_i)}{p(\mathbf{x}_i)}$ b. Eliminate $p(\mathbf{x}_i)$ for both sides c. Calculate $p(\mathbf{y}_i)$ by counting d. Approximate $p(\mathbf{x}_{i1}, \mathbf{x}_{i2}, ..., \mathbf{x}_{iB} | \mathbf{y}_i) \approx \prod_{b=1}^{B} p(\mathbf{x}_{ib} | \mathbf{y}_i)$ e. Calculate each $p(\mathbf{x}_{ib} | \mathbf{y}_i)$ by counting

- f. Use label smoothing if necessary
- g. Use n-gram BofW if necessary
- h. Use log-prob if necessary

Recap of Part 1: Key concepts

- We saw 3 ways of "learning":
 - Searching for rules.
 - Decision trees (greedy recursive splitting using decision stumps).
 - Counting frequencies.
 - Naïve Bayes (probabilistic classifier based on conditional independence
 - Measuring distances.
 - K-nearest neighbours (non-parametric classifier based on distances).
- We saw 2 generic ways of improving performance:
 - Encouraging invariances with data augmentation.
 - Ensemble methods (combine predictions of several models).
 - Random forests

• Hyper-parameter and bias-variance tradeoff

Curse of dimensionality and low-dim manifold

Thanks for your time! Questions?