CPSC 340/540 Tutorial 3

Winter 2024 Term 1

T1A: Tuesday 16:00-17:00;
T1C: Thursday 10:00-11:00;
Office Hour: Wednesday 15:00-16:00
Slides can be found at Piazza and my personal page after T1C.
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Machine Learning:
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Slides Credit: To various pervious TA’s of this course Less helpful on coding


https://joshua-ren.github.io/
mailto:renyi.joshua@gmail.com

* Ensemble Methods
* K-means and Expectation-Maximization
* Recap of Part 1 (supervised learning)



Ensemble Methods (intro)

* They have interesting names: Y
— Averaging.
— Blending.
— Boosting.
— Bootstrapping.
— Bagging.
— Cascading.
— Random Forests.
— Stacking.
— Voting. y,

* Not only popular for Kaggle, but also very
popular in SOTA deep learning systems, e.g.,
Mixture of Experts (MoE) in ChatGPT
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Ensemble Methods (why and when they works)

* Voting and stacking (parallel & sequential)
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— P(2 rights, 1 wrong) = 3*0.8%(1-0.8) = 0.384.
— P(1 right, 2 wrongs) = 3*(1-0.8)%0.8 = 0.096.
— P(all 3 wrong) = (1-0.8) = 0.008.

— So ensemble is right with probability 0.896 |

» ltis less likely that all models make wrong predictions together.

» But, note the following facts:
 We need independence of different models
(sub-sample different features, use different models)
 Almost impossible to achieve independence
(since the dataset is fixed)
 The basic idea can be generalize to many applications
(Multi-mode (Interesting example), MoE, etc.)




Types and Goals of Ensemble Methods

Although overfit in different ways,

* Remember the fundamental trade-off: averaging them can mitigate that.
1. E,..:How small you can make the training error. Capacity
VS.
2. Eg,: how close training error is to test error. Generalization

* Goal of ensemble methods is that meta-classifier:

— Does much better on one of these than individual classifiers.
— Does not do too much worse on the other.

* This suggests two types of ensemble methods:
1. Averaging: improves generalization gap of classifiers with high E, ..
* This is the point of “voting”.
2. Boosting: improves training error of classifiers with high E, ...

* Covered laterin course. S~ "

Individual model underfit (not capable enough),
boosting them can increase the equivalent capacity.




K-means (Unsupervised learning)

Bayesian: p(X;|y;), also other generation models

‘ ' DNN: p(y;|x;), end2end, use the data more efficient
* Supervised learning:

— We have features x; and class labels vy;.
— Write a program that produces y; from x.

* Unsupervised learning:

— We only have x; values, but no explicit target labels.  Self-supervised learning:
— You want to do “something” with them. \ Very common way to get good representations

* Some unsupervised learning tasks: .
— Outlier detection: Is this a ‘normal’ x;? .
— Similarity search: Which examples look like this x;?
— Association rules: Which x! occur together?
— Latent-factors: What ‘parts’ are the x; made from?

GPT

Diffusion model

Variational autoencoder (VAE)
Generative adversarial network (GAN)

— Data visualization: What does the high-dimensional X look like?

— Ranking: Which are the most important x;?

<Clustering: What types of x; are there?>




K-means (Goal)

In clustering we want to assign examples to “groups”:
Output: clusters y.
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*

K-means (Algorithm) %ﬁ.m.'é%
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K-means (Shape of Clusters)

* Recall that k-means assigns cluster based on nearest mean. *  Why must be convex? An intuitive proof.
* This leads to partitions the space :
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* Observe that the clusters are convex regions (proof in bonus).

* There are many other clustering methods who can provide non-convex shapes
(Bottom-up based, density based, etc.)



K-means (Influence of initialization)
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* K-means++, select starting point as sparse as possible (further sample with higher prob.)

Weight examples by o Weight examples by squared T Weight examples by squared
distance to mean squared. oL distance to nearest mean. sl distance to mean.
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K-means (Theoretical Understanding)

* A special case of Gaussian Mixture Model (GMM)
* Guarantee to converge when problem is convex
e Algorithm is called Expectation-maxmization (EM) algorithm

Delay
1o0 T

* Task: estimate 8 = [uq, ..., Ug, 01, .., Ok |
that maximize the likelihood for all given examples

a0

" log P(x; 6)
* E-step: choose assignment to maximize likelihood
70 : In K-means, assign each sample a closest mean
Y * M-step: re-calculate 8 based on assignments
T i In K-means, calculate the new mean

* Repeat to converge
* Jensen provides the guarantee for loss decreasing.
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v" Under/over-fit
v Variance bias trade-off

Optimum Model C omplexity

Recap of Part 1:

Model Complexity
/ v’ otherwise same as one sample
C ) Q/\/o;cherwise no reason to generalize

. v If so, need another clean test set

/ v" Use it to select hyper-parameters
v
/ ’
v

Less #validation samples OR
more trials = more bias

KNN v.s. Naive Bayes
(what is parameter, what is hyper)

el
»

Need uniform data assumption,
‘* which is usually not the case




Recap of Part 1: Key concepts
 We saw 3 ways of “learning”:

— Searching for rules.

(- Decision trees (greedy recursive splitting using decision stumpsD

— Counting frequencies.

* Naive Bayes (probabilistic classifier based on conditional independence).

— Measuring distances.

* K-nearest neighbours (non-parametric classifier based on distances).

* We saw 2 generic ways of improving performance:
— Encouraging invariances with data augmentation.

— Ensemble methods (combine predictions of several models).

* Random forests



Recap of Part 1: Decision trees — why we use “information gain” instead of accuracy
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Recap of Part 1: Key concepts

Stepl: get data using BofW
Step2: calculate p(y; = 1|x;) > p(y; = 0]x;) using
p(X;|yi)p(yi)
p(x;)
Eliminate p(X;) for both sides
Calculate p(y;) by counting
. Approximate

Bayesian and get

A

B
p(Xi1, X2, -, Xiplyi) = 1_[ p(Xiply;)
b=1

e. Calculate each p(x;py;) I:;y counting



Recap of Part 1: Key concepts * Hyper-parameter and bias-variance tradeoff

n=2,k=|
+ We saw 3 ways of “learning”: .
X
— Searching for rules. k
* Decision trees (greedy recursive splitting using decision stumps).
k=10

— Counting frequencies.

* Naive Bayes (probabilistic classifier based on conditional independence

* Curse of dimensionality and low- d|m manlfold
( * K-nearest neighbours (non-parametric classifier based on distances)) |

— Measuring distances.

* We saw 2 generic ways of improving performance: maamr j
% cighbar & f0-t | = 1ove|

— Encouraging invariances with data augmentation. 1d ad

— Ensemble methods (combine predictions of several models).

* Random forests




Thanks for your time!
Questions?



