CPSC 340/540 Tutorial 2

Winter 2024 Term 1

T1A: Tuesday 16:00-17:00;
T1C: Thursday 10:00-11:00;
Office Hour: Wednesday 15:00-16:00
Slides can be found at Piazza and my personal page after T1C.
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e Variance-bias trade-off
e KNN
* Naive Bayes



Variance-bias trade-off (traditional discussion)
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— Bias is expected error due to having wrorig model.
— Variance is expected error due to sensitivity to the training set.
— Noise (irreducible error) is the best <can hope for given the noise (E;..;).
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LA P v %ﬁ“ * E,,, measures how sensitive we are to training data.
s ' * E. .4 Measures if our model is complicated enough to fit data.

‘o om : E,... measures how low can any model make test error.
The “noise” is becoming smaller.
—  E,. does not depend on what model you choose.



Variance-bias trade-off (but when data is non-seperable)

Not always the best!
* Network’s calibration: low variance (high confidence) is not always good

» Fact: most of the time, our model gives a probabilistic prediction,
e.g., spam-filter, MNIST, ...

» Different samples with the same label can be different. -
» Then, we want confidence aligns well with facts. o
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Variance-bias trade-off (traditional)
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Good balance

What we usually see in textbooks



Variance-bias trade-off (double descent, benign overfitting)
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function. Text gives mean squared error for training and testing sets.
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Variance-bias trade-off (double descent (DNN), benign overfitting)
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KNN (Algorithm and implementation)

* To classify an example X::
0. Define distance
1. Find the ‘k’ training examples x; that are “nearest” to X..

2. Classify using the most common label of “nearest” training examples.
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KNN (bias-variance trade-off)

Cptimurm Model Complexily

Model Complexity

Q: how to put the value of “n” and “k” in this diagram?



KNN (bias-variance trade-off)
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KNN (Curse of Dimensionality)

* Fact 1: need exponential more examples to get reasonable good neighbours

— Volume of space grows exponentially with dimension.
* Circle has area O(r?), sphere has area O(r®), 4d hyper-sphere has area O(r?),...

— Need exponentially more points to fill’ a high-dimensional volume.
* “Nearest” neighbours might be really far even with large ‘n’.

-- Assume r < 0.05 is a reasonable choice on unit ball
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neighbor = 1071 = 1072

1d Qd

* That is why many learning methods want DENSE representations and low-rank manifold



KNN (Curse of Dimensionality)

* Fact 2: if samples are uniformly generated, most samples are on “surface”

ﬂ-»o-os
0.35 235 - Split the whole space into several 0.1*0.1*0.1 ... blocks.
f‘f 491 - Random select one
K 1 o ! - Higher prob. that block comes from the “surface”
nonsurface = 0.9 = 0.92 = 0.93
1d 2d 3d

e Support 3: since samples are NOT uniformly generated, they are on “low-dim manifold”

Think about their distance




Naive Bayes (Algorithm and implementation)

e Use bag of words to create features, gets users to label them

"5 b | sc | 340 | Vicodin | ofer | .
1 1 0 0 1 0

X, = [110010] 1 y, =1

0 O 0 0 1 1 .. X, =1[000011] 1 y, =1
0 1 1 1 0 0 .. X3 =1[011100] 0 y3 =0
* Intuition:

if p(y; = 1lx;) > p(y; = 0]x;)

* return “spam”
else

e return “not spam”



Naive Bayes (Algorithm and implementation)

* Supervise learning usually model p(y;|x;) directly, but here we use Bayes to decompose that:

pXily)p(yi) _ p(Xig, Xiz, -, Xigly )P (¥:)
p(X;) p(X;)
* p(X;) is usually hard to calculate, because we might not have enough data when ”"Bag size” B is large
(Recall curse of dimensionality)

p(y;lx;) =

p(y; = 1|x;) > p(y; = 0]x;)

\ 4

$
p(X;ly; = Dp(y; = 1) > p(x;ly; = 0)p(y; = 0)

* Then, p(X;|y;) is also hard to calculate due to similar reason. (Recall curse of dimensionality)
We then assume the independence (might introduce bias, but generally OK)

B
p(Xi1, X2, -, Xiplyi) = 1_[ p(Xiply;)
b=1



Naive Bayes (Algorithm and implementation)

* Now, the task is to estimate p(x|y) for each possible x and y; and the margin prob p(y) for each y
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* Easy to estimate:
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« Label smoothing: what happen if any term in [15_; p(X;|y;) is zero?
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* Avoid probability underflow: use log-prob instead
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Thanks for your time!
Questions?



