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IL describes a chain of learning procedure:
1. Imitation: An innocent agent learn language from its predecessors
2. Interaction: This agent use learned language to accomplish tasks
3. Transmission: This agent transfer language to the next generation.

... ...

What is Iterated Learning?

Alice[t-1] Alice[t]

Solve task

Bob[t]

Alice[t+1]
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Exp 1: simulating the emergence of compositionality in human language (Kirby-2008)
Task: create names for each icons and use that to accomplish a game.

What is Iterated Learning?

0th Gen 9th Gen

• Interaction phase – Lewis Language Game:

Alice[t] Bob[t]

Which one is

Nemone?

The 1st one!

• Imitation phase:

Alice[t]

They are:

Nemone, Nemone, 

Ege-wuwu ,gamane

• Transmission phase:

Alice[t]

They are:

Ege-wawa, mega-wawa, 

Ege-wuwu ,gamane

Kirby, Simon, Hannah Cornish, and Kenny Smith. "Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human 
language." Proceedings of the National Academy of Sciences 2008
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Exp 2: improve the compositionality of the neural representation (Ren-2020)
Almost the same setting with exp1, but with neural network agents.

What is Iterated Learning?

𝑥 ∈ 𝒳 ≜ Color, Shape

𝑚 ∈ ℳ ≜ m1, m2

ℎ ∈ ℋ:𝒳 →ℳ

• Imitation phase: cross-entropy loss between Alice’s prediction and data

• Transmission phase: random sample 𝑚 ∼ 𝑝𝐴(𝑚|𝑥)

• Interaction phase – Lewis Game: REINFORCE update for agents

0th

9th

Ren, Yi, et al. "Compositional languages emerge in a neural iterated learning model." ICLR 2020 6/23



Exp 3: improve the compositional generalization in general representation learning (Ren-2023)
Where is Alice and Bob in a general supervised learning system?

What is Iterated Learning?

ResNet

Backbone HeadSEM

• Imitation phase: knowledge distillation through SEM block

• Interaction phase: directly use downstream loss

• Transmission phase: set student as teacher for next geneneration

𝑥: Vision or Graph 𝑦: Target loss Comp-gen: non-overlapping split

Comp-gen ability improved!

Ren, Yi, et al. "Improving compositional generalization using iterated learning and simplicial embeddings." NeurIPS 2023 7/23



Exp 4: amplifying hidden bias in LLM-agents (Many Self-XXX algorithms, Ren-2024)
Using IL to explain Self-xxx algorithm, treating them as intelligent agents

What is Iterated Learning?

• Imitation phase: finetune, or ICL on generated new data

• Transmission phase: sample new data for next-gen

• Interaction phase: ranking the generated data by rewarding

ReST (2023)

Self-rewarding (2024)

Self-refine (2023)

Gulcehre, Caglar, et al. "Reinforced self-training (ReST) for language modeling." arXiv 2023.
Yuan, Weizhe, et al. "Self-rewarding language models." arXiv preprint arXiv 2024.
Madaan, Aman, et al. "Self-refine: Iterative refinement with self-feedback." NeurIPS 2023
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What is Iterated Learning – Short Summarization

Exp 1: human prefer compositionality  compositional language is achieved

Exp 2: simple NN prefer compositionality  compositional mapping is achieved

Exp 3: complex NN prefer systematicness systematical generalization is improved

Exp 4: LLM have different biases the bias (good and bad) are amplified
(More details in Ren-2024)

Iterated learning can gradually amplify the hidden bias of the intellegent agent.
(This amplifying effect is hard to achieved by explicit regularizers, more details in Ren-2023)

• What IL brings?

• Known facts:

Ren Yi, et.al “Language Model Evolution: An Iterated Learning Perspective”, submitted 2024 9/23
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Extending IL to Deep Learning – Two Buildingblocks

Recall: 
Iterated learning can gradually amplify the hidden bias of the intellegent agent.

Q1: How could IL amplify bias?
A1: Bayesian-IL framework

Q2: Where the bias comes from?
A2: Depends on the agent

(data, model structure, learning)
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A1. Bayesian-IL framework:

Object: 𝑥 ∈ 𝒳

Message: 𝑚 ∈ ℳ

Hypothesis: ℎ ∈ ℋ:𝒳 →ℳ

Data pair: 𝑑 = (𝑥,𝑚)

Prior: P0 ℎ

• Imitation phase: 

agent start from P0 ℎ , learn from 𝐝𝐭−𝟏, becomes P ℎ |𝐝𝐭−𝟏

• Transmission phase: 

sample 𝐝𝐭 ∼ P 𝑑 ℎ∗), where ℎ∗ = argmaxℎ∈𝓗𝐞𝐟𝐟
P ℎ |𝐝𝐭−𝟏

• Interaction phase: 

conduct task, and have 𝕝 ℎ ∈ 𝓗𝐞𝐟𝐟 P ℎ | 𝐝𝐭−𝟏

• Theoretical guarantee: 

P ℎ |𝐝𝑻 → 𝕝 ℎ = ℎ𝑇∗ , where ℎ𝑇∗ = argmaxℎ∈𝓗𝐞𝐟𝐟
P0(h)

More details: Ren Yi, et.al “Language Model Evolution: An Iterated Learning Perspective”, submitted 2024 12/23



A1. Bayesian-IL framework:

Iterated learning can amplify bias in model’s prior P0 ℎ .
Interaction phase further guide the evolution.

Q2: Then, what is a typical bias in P0 ℎ , and where it comes from? 
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Q2: what is a typical bias in prior and where it comes from?

Exp 1: human prefer compositionality  compositional language is achieved

Exp 2: simple NN prefer compositionality compositional mapping is achieved

Exp 3: complex NN prefer systematicness  systematical generalization is improved

Exp 4: LLM have different inborn biases  the bias (good and bad) are amplified

• Known facts:

• Bias can be arbitrary, but let’s start from compositionality in exp 2&3.
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A2. Bias is learning speed advantage:

• Exp 1 assumes human’s cognition system is good at finding patterns.

ege/mega  shape?
wuwu/wawa  texture?

• But this is not so obvious for neural network, 
because mutual information cannot separate the following two mappings:
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A2. Bias is learning speed advantage:

• We find this bias is embodied in model’s learning speed: compositional mapping learns faster!
 For the 2 color 2 shape problem, we have 256 different mappings
 We draw their prior probablity based on their coding length:
 We let a MLP learn these 256 mappings seperately, and observe their learning speed

(Defined as the integral under learning curve, similar to that mentioned in Jack Rae’s talk) 

They are 
highly correlated!
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A2. Where the learning speed advantage comes from?

is ege, this is also ege-xxx

Seems never seen pihino

• Explanation:

 Propose A: from learning dynamics (based on our work of Ren-2022)

 Propose B: from group theory and kolmogorov complexity (based on Ren-2023)

Yi Ren, et.al "Better supervisory signals by observing learning paths." ICLR 2022
Yi Ren, et al. "Improving compositional generalization using iterated learning and simplicial embeddings." NeurIPS 2023
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Evolution of Iterated Learning

• Experiments and applications (imcomplete list):

• Theoretical Understandings (imcomplete list):

2003 2015 2020
[Many other related works] 

[1] Language Evolution
MH Christiansen, S Kirby

Initial idea about 2-stages training

[3] Lab experiments, S Kiryb
Conduct experiments on human,

propose 2 pressures for IL

Simplicity bias is inborn
in human cog-system

[5] Neural agents, Yi Ren
Show IL also works for 

simple NN on a RL setting

Simplicity bias also exist
when training NN using SGD

Different applications on various fields:
[6] Machine Translation, Yuchen Lu
Apply on MT task to counter language drift, enc-dec
[7] Visual Question Answering, Ankit Vani
Improve VQA performance using IL, enc-dec
[8] Multilabel classification, S Rajeswar
Improve multi-label results using IL on IN1K, enc-only
[9] Color naming system, Emil Carlsson
Verify simplicit bias both exist in NN and human, enc-dec
[10] Systematic generalization, Yi Ren
Extend to a general representation learning, backbone-head
...

Other phenomenon might related to IL:
[11] Fortuituous forgetting, Hattie Zhou
Repeatly reset part of the network to create knowledge gap
[12] Primacy bias in RL, E Nikishin
Repeatly reset part of the policy net helps a lot
[13] Iterated learning on CLIP, Ankit Vani,
Applying it on self-supervised learning framework
...

[2] Bayesian Agents, Tom Griffiths
Proves the convergence of imitation-only

IL using a Bayesian framework

[4] Continuous hypothesis, D J. Navarro
Extend the Bayesian framework to 

heterogeneous agents case

2007 2018
[Many other related works] 

2024

[14] A patching for interaction phase, Yi Ren
Add a small patching on interaction phase.

Verify the behavior of LLM on different phases
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Evolution of Iterated Learning – Citation list
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[2] Bayesian Agents: Griffiths, Thomas L., et.al. "Language evolution by iterated learning with Bayesian agents." Cognitive science 2007
[3] Lab experiments: Kirby, Simon, et al. "Compression and communication in the cultural evolution of linguistic structure." Cognition 2015
[4] Continuous hypothesis: Navarro, D. J., et.al 

“When extremists win: Cultural transmission via iterated learning when populations are heterogeneous.” Cognitive Science 2018
[5] Neural agents: Yi Ren, et.al, “Compositional languages emerge in a neural iterated learning model” ICLR 2020
[6] Machine Translation: Lu, Yuchen, et al. "Countering language drift with seeded iterated learning." ICML 2020
[7] Visual Question Answering: Vani, Ankit, et al. "Iterated learning for emergent systematicity in vqa." ICLR 2021
[8] Multilabel Classification: Rajeswar, Sai, et al. "Multi-label iterated learning for image classification with label ambiguity." CVPR 2022
[9] Color naming system: Carlsson Emil, et.al "Iterated learning and communication jointly explain efficient color naming systems." arXiv 2023
[10] Sys-gen: Yi Ren, et al. "Improving compositional generalization using iterated learning and simplicial embeddings." NeurIPS 2023
[11] Fortuituous forgetting: Zhou, Hattie, et al. "Fortuitous forgetting in connectionist networks." ICLR 2022
[12] Primacy bias in RL: Nikishin, Evgenii, et al. "The primacy bias in deep reinforcement learning." ICML 2022
[13] Iterated learning on CLIP: Vani, Ankit, et al. “Iterated Learning Visual Programming” submitted to CVPR 2024
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SUMMARY
Understanding: 
Iterated learning can gradually amplify the hidden bias of the intellegent agent.

Q1: How could IL amplify bias?
A1: Bayesian-IL framework

Q2: Where the bias comes from?
A2: Learning speed advantage of compositional mapping.

Exp 1: human prefer compositionality  compositional language is achieved

Exp 2: simple NN prefer compositionality  compositional mapping is achieved

Exp 3: complex NN prefer systematicness systematical generalization is improved

Exp 4: LLM have different biases the bias (good and bad) are amplified

Applications: 
From cognitive science to deep learning; from compositionality to more general bias.

Future work: 
More understanding, more applications, more efficient algorithm design.
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Thank you for your time.
Q&A
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