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OUTLINES

e Part 1: Introduce IL by some examples



What is Iterated Learning?

IL describes a chain of learning procedure:
1. Imitation: An innocent agent learn language from its predecessors

ﬂ 2. Interaction: This agent use learned language to accomplish tasks
3. Transmission: This agent transfer language to the next generation.
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What is Iterated Learning?

Exp 1: simulating the emergence of compositionality in human language (Kirby-2008)

* Imitation phase:
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What is Iterated Learning?

Exp 2: improve the compositionality of the neural representation (Ren-2020)
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* Imitation phase: cross-entropy loss between Alice’s prediction and data Oth

* Interaction phase — Lewis Game: REINFORCE update for agents

Vo,J =E|[R(¢,z)Viogpa(ml|z)| + AaVH[pa(m|z)]
Voo,J =E[R(¢,z)Viog pp(ém,ci,...,c.)| + ABVH[pp(cm,ci, ..., cc)],

* Transmission phase: random sample m ~ p,(m|x)
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What is Iterated Learning?
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Exp 3: improve the compositional generalization in general representation learning (Ren-2023)
general supervised learning
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x: Vision or Graph y: Target loss
* Imitation phase: knowledge distillation through SEM block

Comp-gen: non-overlapping split

Teacher SEM g1, sampled from Z I
— . . ope .
(Frozen) M — Comp-gen ability improved!
X — Lml(l-ogits) gl:L) -
v Model and molhiy (AURCC T)

Logits Algorithm Valid-full Test-full Valid-half Test-half
—>| Student |——|SEM| Bascline | 82415114 76.550038  T3.655001 72315186
Gen | Baseline+ | 8LO1£0.63  75.58£100 7323+075 72174102
* Interaction phase: directly use downstream loss ﬁ:%*;_i”;'l[? ﬁ;‘;gﬁféég ;ﬁ-ggfgg; ;;ﬁ;:']-;; Eﬁéiﬁ%
h Z Bascline | 81.7651.04 76.90L1.42 76055140 71.63L221
. A ee Bascline+ | 81.55+0.72 77.01£094 7477+1.62 69.75+3.10
X [ BaCkbO”eJ SEM FC-layer |—> Lqgs GIN | SEM-only | 83.05£0.90 78214078 7629+2.06 72.70+4.94
SEM-IL | 83.32:1.51 78.61:0.73 78.06:1.24 72.89.0.48

* Transmission phase: set student as teacher for next geneneration
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What is Iterated Learning?

Exp 4: amplifying hidden bias in LLM-agents (Many Self-XXX algorithms, Ren-2024)
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* Interaction phase: ranking the generated data by rewarding Use M to get feedback on its own output ~ Use ‘M to refine its previous output, given its feedback
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What is Iterated Learning — Short Summarization

e Known facts:

Exp 1: human prefer compositionality = compositional language is achieved
Exp 2: simple NN prefer compositionality = compositional mapping is achieved
Exp 3: complex NN prefer systematicness—> systematical generalization is improved

Exp 4: LLM have different biases—> the bias (good and bad) are amplified

 What IL brings?

lterated learning can gradually amplify the hidden bias of the intellegent agent.



OUTLINES

e Part 2: Extending IL to deep learning



Extending IL to Deep Learning — Two Buildingblocks

Recall:
lterated learning can gradually amplify the hidden bias of the intellegent agent.

74N

Q2: Where the bias comes from?
A2: Depends on the agent
(data, model structure, learning)

Q1: How could IL amplify bias?
Al: Bayesian-IL framework
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Al. Bayesian-IL framework:

Object: x € X
Message: m € M

he j‘feff

Data pair: d = (x, m) ( Agent1l )

Hypothesis:h € H: X -> M
Prior: Py(h)

e Imitation phase:
agent start from Py (h), learn from d*~1, becomes P(h |d*™1)

* Interaction phase:
conduct task, and have I(h € F o5¢)P(h | d*1)

 Transmission phase:
sample d* ~ P(d | h*), where h* = argmaxpege, ., P(h |[d*1)

* Theoretical guarantee:
P(h|d") - 1(h = h™), where h™* = argmaxpeg, ., Po(h)
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Al. Bayesian-IL framework:

0.6

—e— final generation

terated learning can amplify bias in model’s prior Py (h). | W prior
Interaction phase further guide the evolution.
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Q2: Then, what is a typical bias in Py(h), and where it comes from?
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Q2: what is a typical bias in prior and where it comes from?

e Known facts:

human prefer

Exp 2: simple

NN prefer compositionality -

Exp 3: complé

> compositional mapping is achieved

X NN prefer systematicness 1

different inborn biases

2> systematical generalization is improved

Bias can be arbitrary, but let’s start from compositionality in exp 2&3.
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A2. Bias is learning speed advantage:

* Exp 1assumes human’s cognition system is good at finding patterns.
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e But thisis not so obvious for neural network,
because mutual information cannot separate the following two mappings:

A holistic mapping

A compositional mapping 4 rul ”
rules, o = !

Srules, a = 43

S - 72, z1

22: 0 — blue S: 00— blue circle
20 1 = red S: 01 — redcircle
zlI: 0 — circle /. S: 10— red box
z: 1 — box S: 11— blue box
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A2. Bias is learning speed advantage:

* We find this bias is embodied in model’s learning speed: compositional mapping learns faster!
» For the 2 color 2 shape problem, we have 256 different mappings
» We draw their prior probablity based on their coding length:  P(I; «) 9—a
» We let a MLP learn these 256 mappings seperately, and observe their learning speed
(Defined as the integral under learning curve, similar to that mentioned in Jack Rae’s talk)
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A2. Where the learning speed advantage comes from?

* Explanation:

v Propose A: from learning dynamics (based on our work of Ren-2022)

v Propose B: from group theory and kolmogorov complexity (based on Ren-2023)
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OUTLINES

e Part 3: Overview of I's evolution



Evolution of lterated Learning

* Experiments and applications (imcomplete list):

[1] Language Evolution
MH Christiansen, S Kirby ~ Conduct experiments on human,
Initial idea about 2-stages training

l ; :

[3] Lab experiments, S Kiryb  [5] Neural agents, Yi Ren
Show IL also works for
propose 2 pressures for IL simple NN on a RL setting

Different applications on various fields:

[6] Machine Translation, Yuchen Lu

Apply on MT task to counter language drift, enc-dec

[7] Visual Question Answering, Ankit Vani

Improve VQA performance using IL, enc-dec

[8] Multilabel classification, S Rajeswar

Improve multi-label results using IL on IN1K, enc-only

[9] Color naming system, Emil Carlsson

Verify simplicit bias both exist in NN and human, enc-dec
[10] Systematic generalization, Yi Ren

Extend to a general representation learning, backbone-head

—

2003 2015 2020

Simplicity bias is inborn

* Theoretical Understandings (imcomplete list):

[2] Bayesian Agents, Tom Griffiths [4] Continuous hypothesis, D J. Navarro
Proves the convergence of imitation-only Extend the Bayesian framework to
IL using a Bayesian framework heterogeneous agents case

l l

Simplicity bias also exist
in human cog-system when training NN using SGD

v

Other phenomenon might related to IL:
[11] Fortuituous forgetting, Hattie Zhou
— > Repeatly reset part of the network to create knowledge gap
[12] Primacy bias in RL, E Nikishin
Repeatly reset part of the policy net helps a lot
[13] Iterated learning on CLIP, Ankit Vani,
Applying it on self-supervised learning framework

[14] A patching for interaction phase, Yi Ren
Add a small patching on interaction phase.
Verify the behavior of LLM on different phases

l ;

2007 2018

2024
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Evolution of Iterated Learning — Citation list

[1] Language Evolution:

[2] Bayesian Agents:

[3] Lab experiments:

[4] Continuous hypothesis:

[5] Neural agents:

[6] Machine Translation:

[7] Visual Question Answering:
[8] Multilabel Classification:
[9] Color naming system:

[10] Sys-gen:

[11] Fortuituous forgetting:
[12] Primacy bias in RL:

[13] Iterated learning on CLIP:
[14] A patching for interaction phase:
[15] Knowledge Distillation:



SUMMARY

Understanding:
lterated learning can gradually amplify the hidden bias of the intellegent agent.

Q1: How could IL amplify bias? Q2: Where the bias comes from?
Al: Bayesian-IL framework A2: Learning speed advantage of compositional mapping.
Applications:

From cognitive science to deep learning; from compositionality to more general bias.

Exp 1: human prefer compositionality = compositional language is achieved
Exp 2: simple NN prefer compositionality = compositional mapping is achieved
Exp 3: complex NN prefer systematicness—> systematical generalization is improved

Exp 4: LLM have different biases—> the bias (good and bad) are amplified

Future work:
More understanding, more applications, more efficient algorithm design.




Thank you for your time.
Q&A



