Neural Iterated Learning: Applications and Understandings

Yi (Joshua) Ren, UBC

OUTLINES

- Part 1: Introduce IL by some examples
- Part 2: Extending IL to deep learning
- Part 3: Overview of IL's evolution

OUTLINES

- Part 1: Introduce IL by some examples
- Part 2: Extending IL to deep learning
- Part 3: Overview of IL's evolution

IL describes a chain of learning procedure:

- **1.** *Imitation:* An innocent agent learn language from its predecessors
 - 2. Interaction: This agent use learned language to accomplish tasks
- **3.** *Transmission:* This agent transfer language to the next generation.

Alice[t-1] Alice[t] Alice[t+1]

Exp 1: simulating the emergence of **compositionality** in human language (Kirby-2008) Task: create names for each icons and use that to accomplish a game.

Kirby, Simon, Hannah Cornish, and Kenny Smith. "Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language." Proceedings of the National Academy of Sciences 2008

Exp 2: improve the compositionality of the *neural representation* (Ren-2020) Almost the same setting with exp1, but with neural network agents.

- Imitation phase: cross-entropy loss between Alice's prediction and data
- Interaction phase Lewis Game: REINFORCE update for agents

 $\begin{aligned} \nabla_{\theta_A} J &= \mathbb{E} \left[R(\bar{c}, x) \nabla \log p_A(\mathbf{m} | x) \right] + \lambda_A \nabla H[p_A(\mathbf{m} | x)] \\ \nabla_{\theta_B} J &= \mathbb{E} \left[R(\bar{c}, x) \nabla \log p_B(\bar{c} | \mathbf{m}, c_1, ..., c_c) \right] + \lambda_B \nabla H[p_B(\bar{c} | \mathbf{m}, c_1, ..., c_c)], \end{aligned}$

• Transmission phase: random sample $m \sim p_A(m|x)$

 $x \in \mathcal{X} \triangleq [\text{Color, Shape}]$

 $m \in \mathcal{M} \triangleq [m_1, m_2]$

 $h\in\mathcal{H}\colon\mathcal{X}\to\mathcal{M}$

-		blue	green	cyan	brown	red	black	yellow	white
0 th	box	aa	fh	af	hh	cg	fc	ha	hf
	circle	da	df	hb	db	fa	da	dh	fb
	triangle	gc	ff	ge	gf	gg	fg	ge	he
	square	ae	fb	be	bb	bg	fb	gb	ba
	star	ad	fd	de	db	dg	fd	ce	hc
	diamond	ac	dd	dc	db	dg	fd	dc	dd
	pentagon	ad	fe	ef	bd	eg	fc	ee	ed
	capsule	aa	dd	de	db	dg	gd	de	fh

-		blue	green	cyan	brown	red	black	yellow	white
-	box	aa	ea	ba	ga	da	ca	ha	fa
9 th	circle	ab	eb	bb	gb	db	cb	hb	fb
	triangle	ae	eb	be	ge	de	ce	he	fe
	square	af	ef	bf	gf	df	cf	hf	ff
	star	ac	ec	bc	gc	dc	cc	dh	fc
	diamond	ad	ed	bd	gd	dd	cd	hd	fd
	pentagon	ag	eg	bg	gg	dg	cg	hg	fg
	capsule	ah	eh	bh	gh	hc	ch	hh	fh

Exp 3: improve the compositional generalization in general representation learning (Ren-2023) Where is Alice and Bob in a general supervised learning system?

x: Vision or Graph y: Target loss

• Interaction phase: directly use downstream loss

• **Transmission phase:** set student as teacher for next geneneration

Comp-gen ability improved!

		-							
	Mo	odel and	molhiv (AUROC ↑)						
_	Algorithm		Valid-full	Test-full	Valid-half	Test-half			
_		Baseline	82.41 ± 1.14	76.25 ± 0.38	75.65 ± 0.91	72.31 ± 1.86			
	GCN	Baseline+	81.61±0.63	75.58 ± 1.00	73.23±0.75	72.17±1.02			
	GCN	SEM-only	84.00 ± 1.10	78.40±0.67	74.84±1.57	72.81±2.32			
		SEM-IL	84.89±0.68	79.09±0.67	78.48±0.67	$74.02 {\pm} 0.78$			
		Baseline	81.76 ± 1.04	76.99±1.42	76.95±1.40	71.63 ± 2.21			
	GIN	Baseline+	81.55±0.72	77.01±0.94	74.77±1.62	69.75±3.10			
	OIN	SEM-only	83.05 ± 0.90	78.21 ± 0.78	76.29 ± 2.06	72.70 ± 4.94			
_		SEM-IL	$83.32{\pm}1.51$	$\textbf{78.61}{\pm}\textbf{0.73}$	$\textbf{78.06}{\pm}\textbf{1.24}$	$\textbf{72.89}{\pm 0.48}$			

Train split Test split Others

Comp-gen: non-overlapping split

Exp 4: amplifying hidden bias in LLM-agents (Many Self-XXX algorithms, Ren-2024)

Using IL to explain Self-xxx algorithm, treating them as intelligent agents

Gulcehre, Caglar, et al. "Reinforced self-training (ReST) for language modeling." arXiv 2023. Yuan, Weizhe, et al. "Self-rewarding language models." arXiv preprint arXiv 2024. Madaan, Aman, et al. "Self-refine: Iterative refinement with self-feedback." NeurIPS 2023

What is Iterated Learning – Short Summarization

• Known facts:

Exp 1: human prefer compositionality → compositional language is achieved
Exp 2: simple NN prefer compositionality → compositional mapping is achieved
Exp 3: complex NN prefer systematicness → systematical generalization is improved

Exp 4: LLM have different biases \rightarrow the bias (good and bad) are amplified

(More details in Ren-2024)

• What IL brings?

Iterated learning can gradually amplify the hidden bias of the intellegent agent. (This amplifying effect is hard to achieved by explicit regularizers, more details in Ren-2023)

OUTLINES

- Part 1: Introduce IL by some examples
- Part 2: Extending IL to deep learning

• Part 3: Overview of IL's evolution

Extending IL to Deep Learning – Two Buildingblocks

Recall:

Iterated learning can gradually **amplify** the **hidden bias** of the intellegent agent.

Q1: How could IL amplify bias? A1: Bayesian-IL framework Q2: Where the bias comes from?A2: Depends on the agent (data, model structure, learning)

A1. Bayesian-IL framework:

Object: $x \in \mathcal{X}$ Message: $m \in \mathcal{M}$ Data pair: d = (x, m)Hypothesis: $h \in \mathcal{H}: \mathcal{X} \to \mathcal{M}$ Prior: $P_0(h)$

• Imitation phase:

agent start from $P_0(h)$, learn from d^{t-1} , becomes $P(h | d^{t-1})$ Alice[t-1]

• Interaction phase:

conduct task, and have $\mathbb{I}(h \in \mathcal{H}_{eff}) P(h \mid d^{t-1})$

• Transmission phase:

sample $\mathbf{d}^{\mathbf{t}} \sim P(d \mid h^*)$, where $h^* = \operatorname{argmax}_{h \in \mathcal{H}_{eff}} P(h \mid \mathbf{d}^{\mathbf{t-1}})$

• Theoretical guarantee: $P(h | \mathbf{d}^T) \rightarrow \mathbb{I}(h = h^{T*})$, where $h^{T*} = \operatorname{argmax}_{h \in \mathcal{H}_{eff}} P_0(h)$

A1. Bayesian-IL framework:

Iterated learning can amplify bias in model's prior $P_0(h)$. Interaction phase further guide the evolution.

Q2: Then, what is a typical bias in $P_0(h)$, and where it comes from?

final generation

prior

0.6

0.5

0.4

Q2: what is a typical bias in prior and where it comes from?

- Known facts:
 - Exp 1: human prefer compositionality \rightarrow compositional language is achieved Exp 2: simple NN prefer compositionality \rightarrow compositional mapping is achieved Exp 3: complex NN prefer systematicness \rightarrow systematical generalization is improved Exp 4: LLM have different inborn biases \rightarrow the bias (good and bad) are amplified
- **<u>Bias can be arbitrary</u>**, but let's start from compositionality in exp 2&3.

A2. Bias is learning speed advantage:

• Exp 1 assumes human's cognition system is good at **finding patterns**.

 But this is not so obvious for neural network, because <u>mutual information</u> cannot separate the following two mappings:

A2. Bias is learning speed advantage:

- We find this bias is embodied in model's learning speed: compositional mapping learns faster!
 - ➢ For the 2 color 2 shape problem, we have 256 different mappings
 - > We draw their prior probablity based on their coding length: $P(l;\alpha) \propto 2^{-\alpha}$
 - We let a MLP learn these 256 mappings seperately, and observe their learning speed (Defined as the integral under learning curve, similar to that mentioned in Jack Rae's talk)

A2. Where the learning speed advantage comes from?

- Explanation:
 - ✓ Propose A: from <u>learning dynamics</u> (based on our work of Ren-2022)
 - ✓ Propose B: from group theory and <u>kolmogorov complexity</u> (based on Ren-2023)

Yi Ren, et.al "Better supervisory signals by observing learning paths." ICLR 2022 Yi Ren, et al. "Improving compositional generalization using iterated learning and simplicial embeddings." NeurIPS 2023

OUTLINES

- Part 1: Introduce IL by some examples
- Part 2: Extending IL to deep learning
- Part 3: Overview of IL's evolution

Evolution of Iterated Learning – Citation list

[1] Language Evolution: Christiansen, Morten H., and Simon Kirby, eds. Language evolution. OUP Oxford, 2003.
 [2] Bayesian Agents: Griffiths, Thomas L., et.al. "Language evolution by iterated learning with Bayesian agents." Cognitive science 2007
 [3] Lab experiments: Kirby, Simon, et al. "Compression and communication in the cultural evolution of linguistic structure." Cognition 2015
 [4] Continuous hypothesis: Navarro, D. J., et.al

"When extremists win: Cultural transmission via iterated learning when populations are heterogeneous." Cognitive Science 2018[5] Neural agents: Yi Ren, et.al, *"Compositional languages emerge in a neural iterated learning model" ICLR 2020*[6] Machine Translation: *Lu, Yuchen, et al. "Countering language drift with seeded iterated learning." ICML 2020*[7] Visual Question Answering: Vani, Ankit, et al. *"Iterated learning for emergent systematicity in vqa." ICLR 2021*[8] Multilabel Classification: *Rajeswar, Sai, et al. "Multi-label iterated learning for image classification with label ambiguity." CVPR 2022*[9] Color naming system: *Carlsson Emil, et.al "Iterated learning and communication jointly explain efficient color naming systems." arXiv 2023*[10] Sys-gen: *Yi Ren, et al. "Improving compositional generalization using iterated learning and simplicial embeddings." NeurIPS 2023*[11] Fortuituous forgetting: *Zhou, Hattie, et al. "Fortuitous forgetting in connectionist networks." ICLR 2022*[12] Primacy bias in RL: *Nikishin, Evgenii, et al. "The primacy bias in deep reinforcement learning." ICML 2022*[13] Iterated learning on CLIP: *Vani, Ankit, et al. "Iterated Learning Visual Programming" submitted to CVPR 2024*[14] A patching for interaction phase: *Ren Yi, et.al "Language Model Evolution: An Iterated Learning Perspective", submitted 2024*[15] Knowledge Distillation: *Furlanello, Tommaso, et al. "Born again neural networks." ICML, 2018*

SUMMARY

Understanding:

Iterated learning can gradually **amplify** the **hidden bias** of the intellegent agent.

Q1: How could IL amplify bias? A1: Bayesian-IL framework Q2: Where the bias comes from? A2: Learning speed advantage of compositional mapping.

Applications:

From cognitive science to deep learning; from compositionality to more general bias.

Exp 1: human prefer compositionality \rightarrow compositional language is achieved Exp 2: simple NN prefer compositionality \rightarrow compositional mapping is achieved Exp 3: complex NN prefer systematicness \rightarrow systematical generalization is improved

Exp 4: LLM have different biases \rightarrow the bias (good and bad) are amplified

Future work:

More understanding, more applications, more efficient algorithm design.

Thank you for your time. Q&A