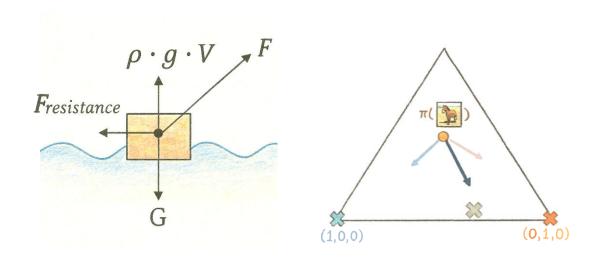
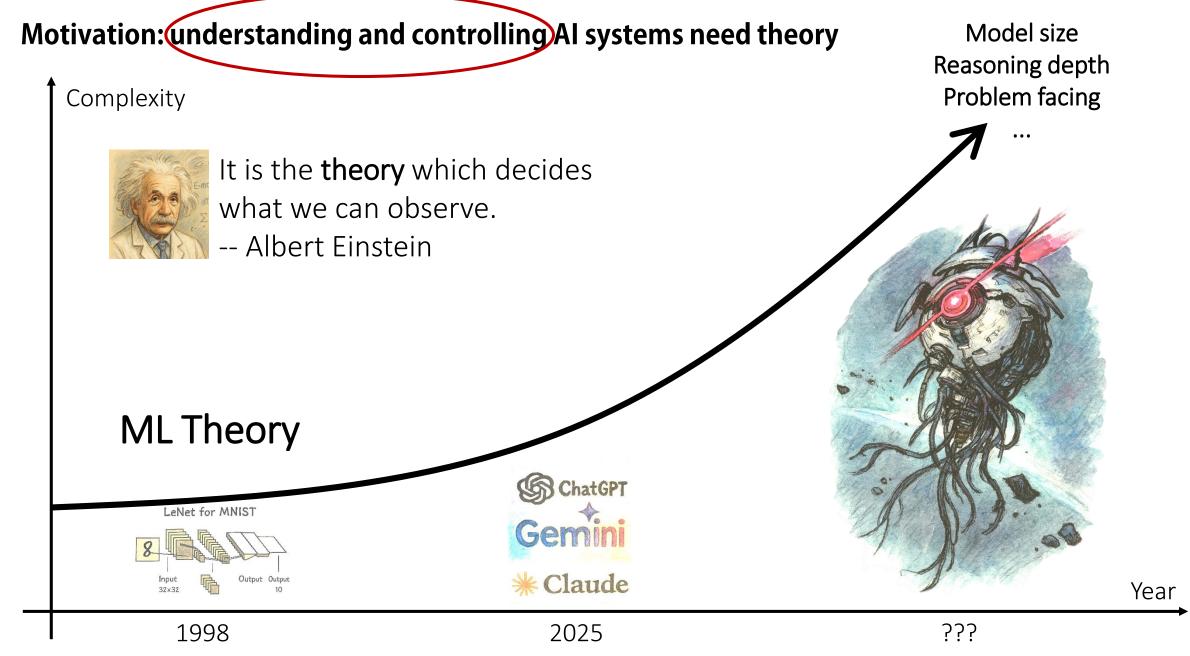
## **Learning Dynamics of Deep Learning**

-- Force Analysis of Deep Neural Networks



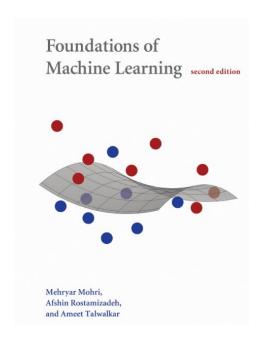
Yi (Joshua) Ren Supervisor: Danica J. Sutherland



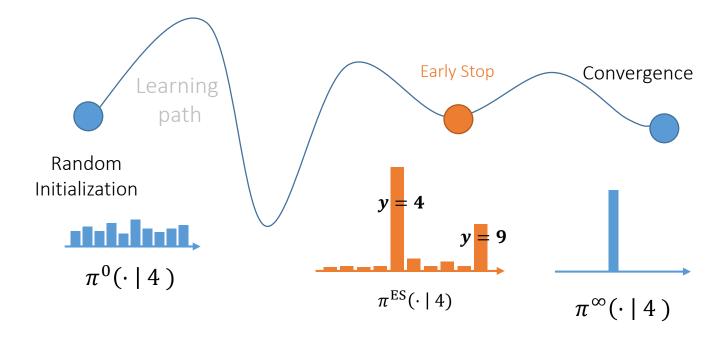


## Motivation: ML theory needs diverse perspectives

- PAC learning framework
  - -- strict, elegant, global, and macroscopic



- But, I failed to use it understanding this emergent behavior:
  - -- an interesting pairing effect emerges during training



Methodology: zoom in, in time and sample spaces

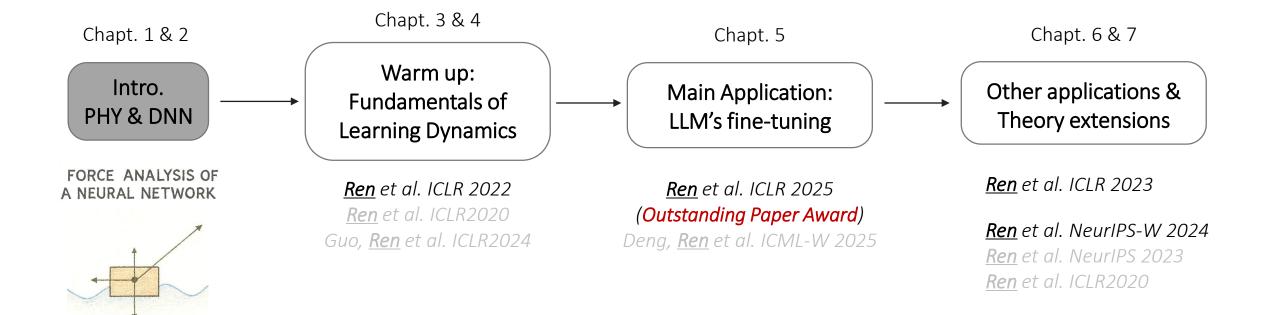


It is the theory which decides what we can **observe**.
-- Albert Finstein

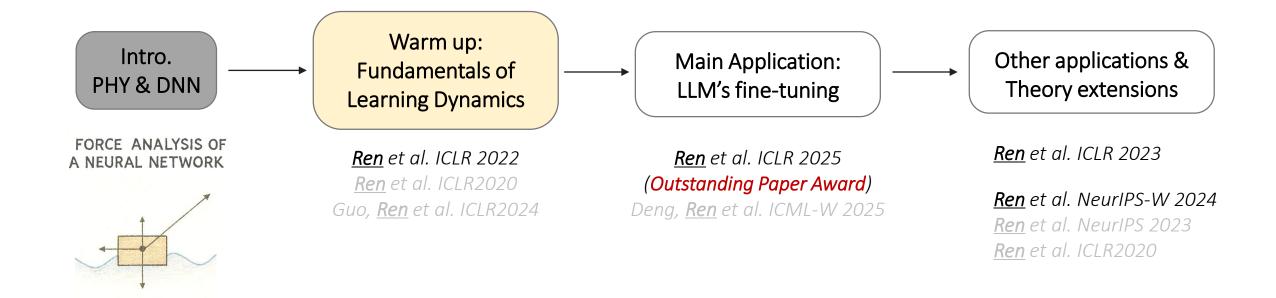
# Force analysis of Neural Network (Learning Dynamics of Deep Learning)

A fine-grained, physics-inspired ML theoretical framework

#### **Outline**



#### **Outline**



## BETTER SUPERVISORY SIGNALS BY OBSERVING LEARNING PATHS

ICLR – 2022 Chapter 3 & 4

Yi Ren UBC

renyi.joshua@gmail.com

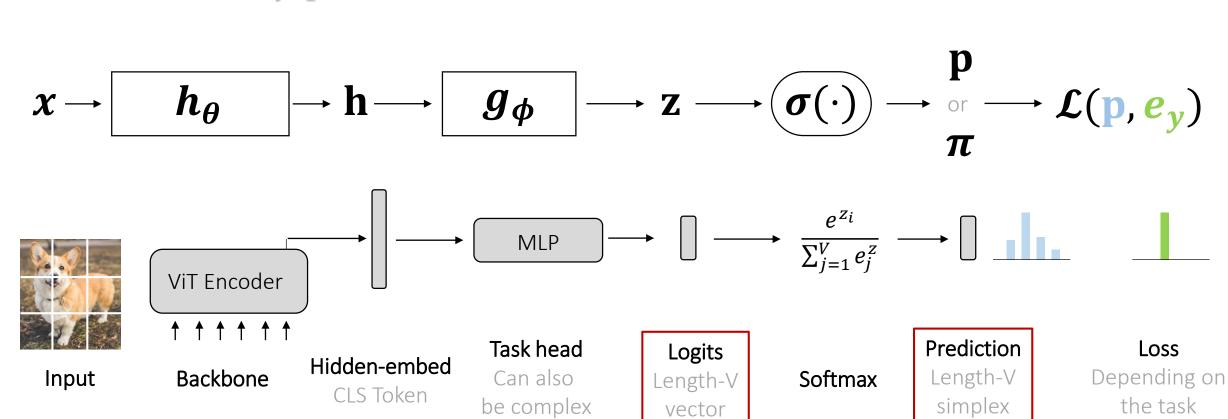
**Shangmin Guo** 

University of Edinburgh s.guo@ed.ac.uk

Danica J. Sutherland UBC and Amii dsuth@cs.ubc.ca

## Typical ML system: a sketch for notations

$$\mathcal{L}_{ce} = -\sum_{v=1}^{V} y_v \log(p(y=v|x)) = -\mathbf{e}_y^{\mathrm{T}} \log \mathbf{p}(x) = -\mathbf{e}_y^{\mathrm{T}} \log \boldsymbol{\sigma}(\mathbf{z}) = \cdots$$



#### Warm up: formalize the problem

Observation

**Updating** 

Definition of one-step influence: How the model's confidence on  $x_o$  changes after learning  $x_u$ ?

- Analyze what?
  - ✓ Model's prediction on  $x_0$
- Where does the force comes from?
  - ✓ Model's update on learning  $x_u$

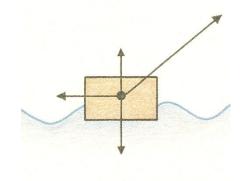
1<sup>st</sup>-order Taylor expansion

$$\log \pi_{\theta^{t+1}}(\mathbf{y}|\mathbf{x_o}) - \log \pi_{\theta^t}(\mathbf{y}|\mathbf{x_o}) \approx \langle \nabla_{\theta} \log \pi_{\theta^t}, \Delta \theta \rangle$$

$$\Delta\theta = -\eta \cdot \nabla \mathcal{L}(\pi_{\theta}(\mathbf{x}_{\mathbf{u}}), \mathbf{y}_{\mathbf{u}})$$

Gradient descent





$$\Delta \log \pi_{\theta^t}(y|\mathbf{x_o}) = -\eta \mathcal{A}^t(\mathbf{x_o}) \mathcal{K}^t(\mathbf{x_o}, \mathbf{x_u}) \mathcal{G}^t(\mathbf{x_u}, \mathbf{y_u}) + \mathcal{O}(\eta^2)$$

Proceedings of Machine Learning Research https://proceedings.mlr.press > ... PDF

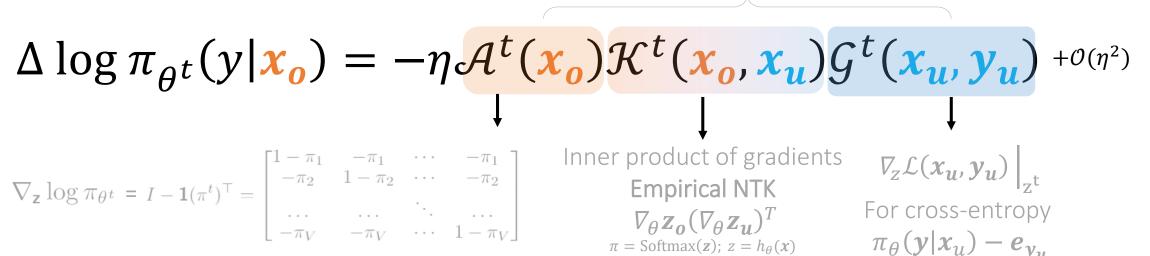
**ICML 2017** 

#### Understanding Black-box Predictions via Influence Functions

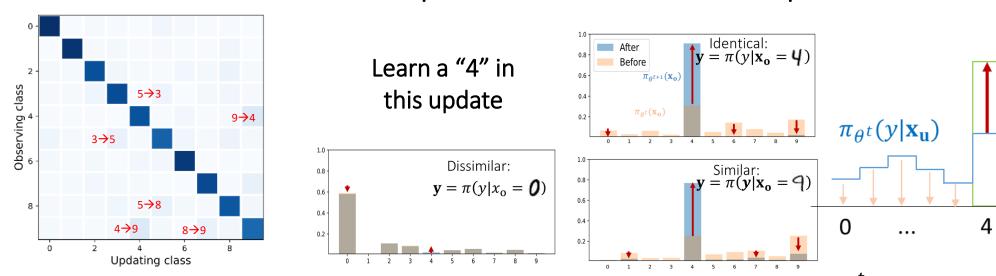
by PW Koh  $\cdot$  Cited by 3508 — In this paper, we use **influence func- tions** — a classic technique from robust statis- tics — to trace a model's prediction through the learning algorithm and ...

## Warm up: understand the role of K-term





#### Let's Warm up with a MNIST classification problem



Accumulates over several epochs

Imposed on  $x_0$ 

Projected by  $\mathcal{K}^t$ Normalized by  $\mathcal{A}^t$ 

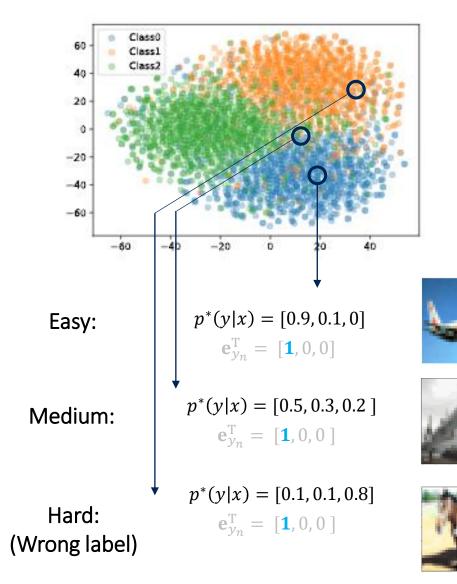
Force from  $\mathcal{G}^t$ 

9

#### Warm up: understand the evolution of G-term

 $\Delta \log \pi_{\theta^t}(y|\mathbf{x_o}) \approx -\eta \mathcal{A}^t(\mathbf{x_o}) \,\mathcal{K}^t(\mathbf{x_o}, \mathbf{x_u}) \,\mathcal{G}^t(\mathbf{x_u}, \mathbf{y_u})$ 

Examples with different difficulity



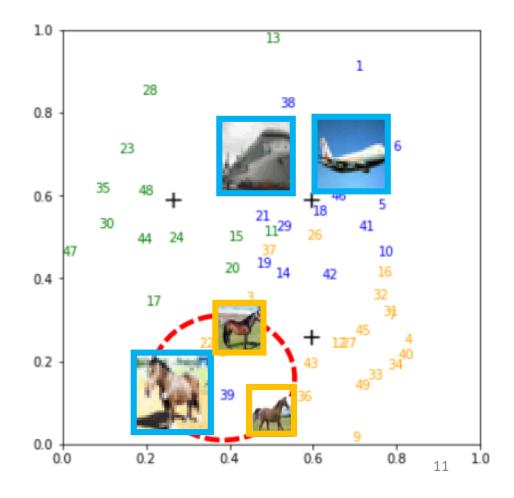
All labeled as "Plane"

A plane.

Plane? Ship?



Consider noisy-CIFAR-3
 (Numbers are sample ID)

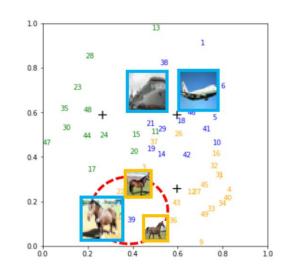


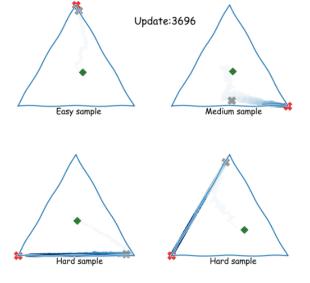
#### Warm up: understand the evolution of G-term

$$\Delta \log \pi_{\theta^t}(y|\mathbf{x_o}) \approx -\eta \sum_{\mathbf{x_u} \in \mathcal{D}} \mathcal{A}^t(\mathbf{x_o}) \,\mathcal{K}^t(\mathbf{x_o}, \mathbf{x_u}) \,\mathcal{G}^t(\mathbf{x_u}, \mathbf{y_u})$$



epoch start
+ epoch end
Xo update start
+ Xo update end
Other Xu update



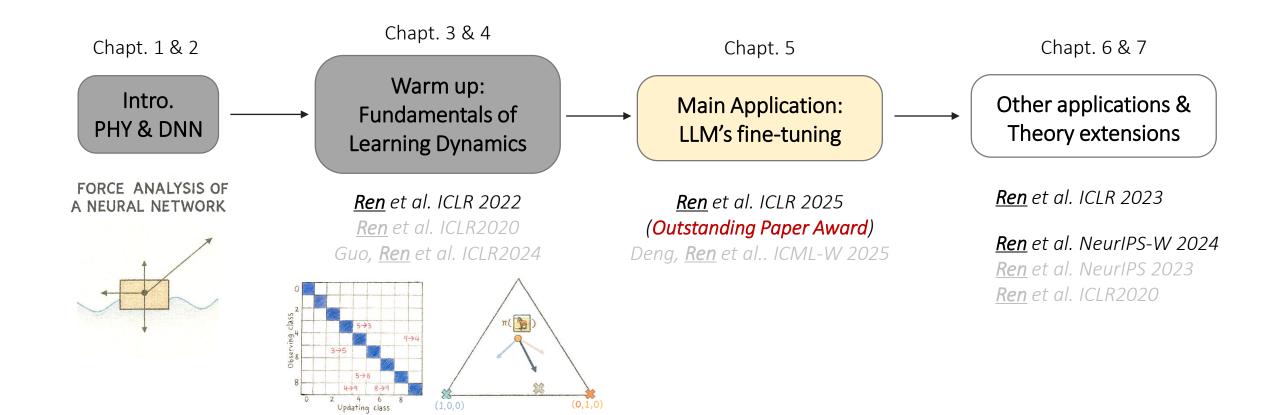


#### Warm up: summary

$$\Delta \log \pi_{\theta^t}(y|\mathbf{x_o}) \approx -\eta \sum_{\mathbf{x_u} \in \mathcal{D}} \mathcal{A}^t(\mathbf{x_o}) \,\mathcal{K}^t(\mathbf{x_o}, \mathbf{x_u}) \,\mathcal{G}^t(\mathbf{x_u}, \mathbf{y_u})$$

- ✓ Force comes from  $\mathcal{G}^t$
- ✓ Then projected by  $\mathcal{K}^t$  and  $\mathcal{A}^t$
- $\checkmark$  Finally imposed on  $\log \pi(x_o)$
- $\checkmark \mathcal{G}^t(x_u, y_u)$  evolves with time t

#### **Outline**



## LEARNING DYNAMICS OF LLM FINETUNING

#### Yi Ren

University of British Columbia renyi.joshua@gmail.com

#### Danica J. Sutherland

University of British Columbia & Amii dsuth@cs.ubc.ca

ICLR – 2025 (Outstanding Paper Award) Chapter 5

## **Motivation: unexpected behaviors of SFT**

- SFT is good, but many unexpected behaviors:
  - > SFT makes the "less preferred responses" more likely
  - > SFT exacerbates hallucination

#### A Closer Look at the Limitations of Instruction Tuning

Sreyan Ghosh Chandra Kiran Reddy Evuru Sonal Kumar
Ramaneswaran S Deepali Aneja Zeyu Jin
Ramani Duraiswami Dinesh Manocha

Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models

Yue Zhang<sup>♠</sup>, Yafu Li<sup>⋄</sup>, Leyang Cui<sup>⋄</sup>, Deng Cai<sup>⋄</sup>, Lemao Liu<sup>⋄</sup>

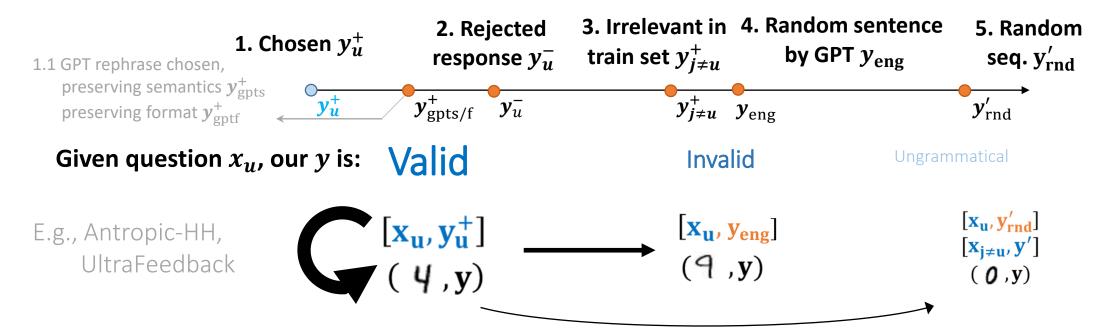


#### Theory: extend learning dynamics to LLM

After some work, we get:

some work, we get: 
$$[\Delta \log \pi^t(y|\chi_o)]_m = -\sum_{l=1}^L \eta [\mathcal{A}^t(\chi_o)]_m [\mathcal{K}^t(\chi_o,\chi_u)]_{m,l} [\mathcal{G}(\chi_u)]_l + \mathcal{O}(\eta^2)$$

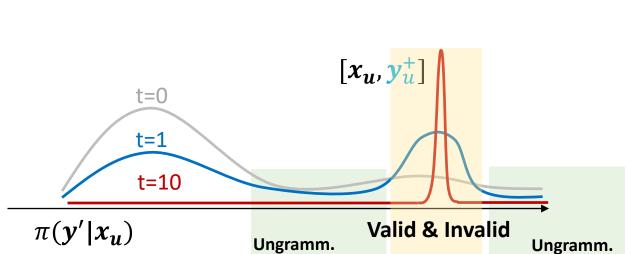
• Check some typical responses (update using  $[x_u, y_u^+]$ ):

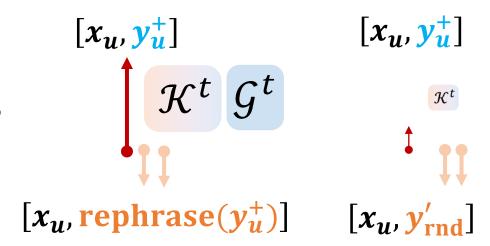


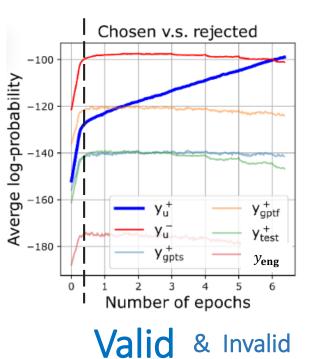
#### Application: analyze behaviors in SFT

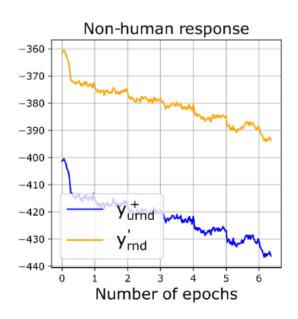
Why does SFT make the "less prefered answer" more likely?

Because those answers are similar to  $[x_u, y_u^+]$ 







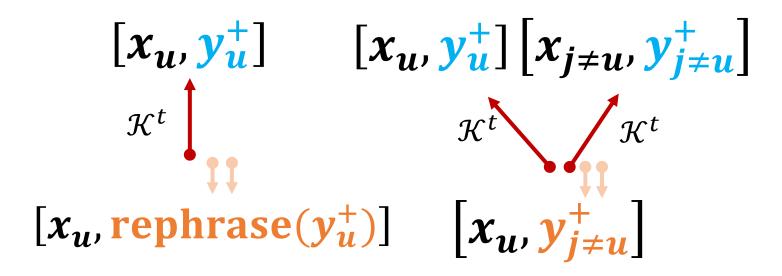


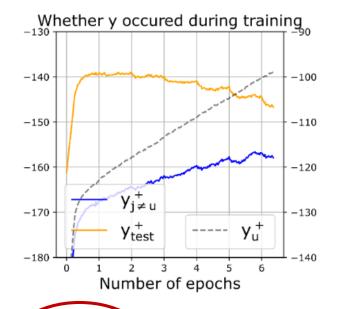
Ungrammatical

## Application: analyze behaviors in SFT

Why does SFT exacerbate hallucination? (Specific type of hallucination)  $\begin{bmatrix} x_u, y_u^+ \end{bmatrix}$  t=1 t=10Result 3

Hallucinated "facts" have MORE "pull-up forces"





Result 3: hallucination!!!  $[x_u, y_{j\neq u}^+]$  increases a lot! Using A2 to answer Q1

## More empirical supports: from a famous project

## HALoGEN

## Fantastic LLM Hallucinations and Where to Find Them

Abhilasha Ravichander<sup>1\*</sup> Shrusti Ghela<sup>1†\*</sup> David Wadden<sup>2</sup>

Yejin Choi<sup>13</sup>

https://halogen-hallucinations.github.io/

Type B

An incorrect fact was in the pretraining data or the fact is taken out of context i.e. the fact appeared within a specific setting in a document in the training data, but when taken in isolation, it loses its original meaning.

- User Prompt: "Write a Python function to calculate the F1 score using scikit-learn."
- LLM's hallucinated response:  $x_u, y_{i\neq u}^+$

from sklearn.metrics import fscore def calculate\_f1(y\_true, y\_pred): return fscore(y\_true, y\_pred)

No fscore! Should be f1\_score

Where "fscore" comes from:



$$\left[x_{j\neq u},y_{j\neq u}^+\right]$$

... you can calculate **fscore** easily use **sklearn.metrics**, ...

... To calculate the **fscore** between two predictions, a straightforward way is to use **sklearn** or pytorch function ...

## Motivation: unexpected behaviors in preference tuning

- DPO (or xPO) is good, but more unexpected behaviors:
  - More frequent "repeater" after finetuning
  - ightharpoonup DPO makes both  $\pi(y+)$  and  $\pi(y-)$  decrease

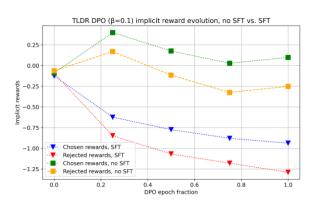
## THE CURIOUS CASE OF NEURAL TEXT DeGENERATION

Ari Holtzman<sup>†‡</sup> Jan Buys<sup>§†</sup> Li Du<sup>†</sup> Maxwell Forbes<sup>†‡</sup> Yejin Choi<sup>†‡</sup>
<sup>†</sup>Paul G. Allen School of Computer Science & Engineering, University of Washington
<sup>‡</sup>Allen Institute for Artificial Intelligence
<sup>§</sup>Department of Computer Science, University of Cape Town
{ahai, dul2, mbforbes, yejin}@cs.washington.edu, jbuys@cs.uct.ac.za

From r to  $Q^*$ : Your Language Model is Secretly a Q-Function

Rafael Rafailov\* Stanford University rafailov@stanford.edu

Chelsea Finn Stanford University cbfinn@stanford.edu Joey Hejna\* Ryan Park
Stanford University
jhejna@stanford.edu rypark@stanford.edu



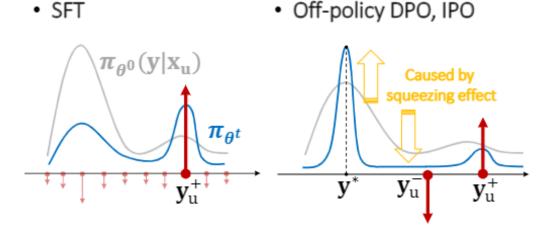


#### Theory: extend to DPO, focusing on negative gradient

$$\mathcal{L}_{\mathrm{DPO}}(\theta) = -\mathbb{E}_{(\mathbf{x}_{u}, \mathbf{y}_{u}^{+}, \mathbf{y}_{u}^{-}) \sim \mathcal{D}} \left[ \log \sigma \left( \beta \log \frac{\pi_{\theta^{t}}(\mathbf{y}_{u}^{+} \mid \boldsymbol{\chi}_{u}^{+})}{\pi_{\mathrm{ref}}(\mathbf{y}_{u}^{+} \mid \boldsymbol{\chi}_{u}^{+})} - \beta \log \frac{\pi_{\theta^{t}}(\mathbf{y}_{u}^{-} \mid \boldsymbol{\chi}_{u}^{-})}{\pi_{\mathrm{ref}}(\mathbf{y}_{u}^{-} \mid \boldsymbol{\chi}_{u}^{-})} \right) \right]$$

$$[\Delta \log \pi^{t}(y|\chi_{o})]_{m} \approx -\eta [\mathcal{A}^{t}(\chi_{o})]_{m} \left( \sum_{l=1}^{L^{+}} [\mathcal{K}^{t}(\chi_{o}, \chi_{u}^{+})\mathcal{G}_{\mathrm{DPO+}}^{t}]_{m,l} - \sum_{l=1}^{L^{-}} [\mathcal{K}^{t}(\chi_{o}, \chi_{u}^{-})\mathcal{G}_{\mathrm{DPO-}}^{t}]_{m,l} \right)$$

$$\mathcal{G}_{\mathrm{DPO+}}^{t} = \beta (1 - \sigma(\cdot)) \left( \pi_{\theta^{t}}(\mathbf{y} | \chi_{u}^{+}) - \mathbf{y}_{u}^{+} \right); \mathcal{G}_{\mathrm{DPO-}}^{t} = \beta (1 - \sigma(\cdot)) \left( \pi_{\theta^{t}}(\mathbf{y} | \chi_{u}^{-}) - \mathbf{y}_{u}^{-} \right);$$



#### Theory: a provable Squeezing Effect!

As long as you use Softmax to get probabilies, very likely:

Adding <u>big negative gradient</u> for an <u>already unlikely</u>  $y_u^-$  makes weird things happen!

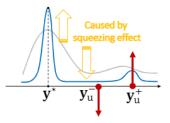
- (GLOBAL) Almost ALL output probs. ↓ ↓
- Except argmax ↑↑

Push down everything but the argmax 
$$\boldsymbol{\pi_{\theta^0}}$$

$$P(y_u^- = 0) = \frac{e^{-10}}{e^{-10} + e^{10} + \cdots}$$



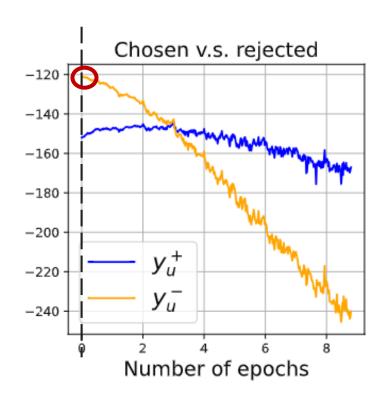
#### **Application: analyze off-policy DPO**

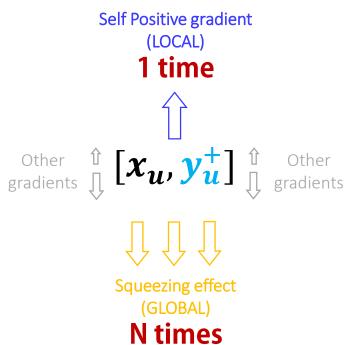


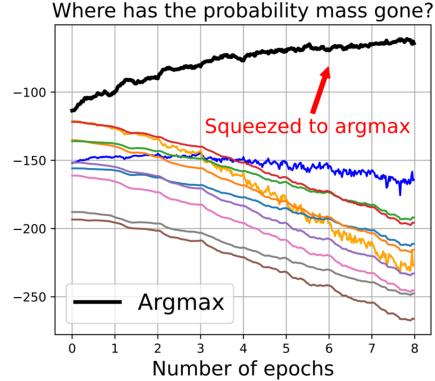
 $\triangleright$  DPO makes both  $\pi(y+)$  and  $\pi(y-)$  decrease (Explanation using squeezing effect)

 $\succ \pi_{\theta}(y^*|\chi_u)$  keeps increasing (Only self-reinforcing, irrelevant to  $\mathcal{D}$ )

#### Per-batch (N examples)





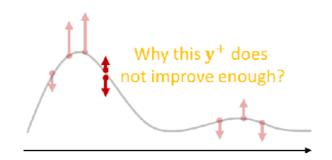


#### **Application: Improve Exploration in GRPO**

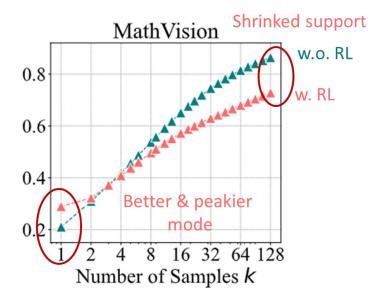
#### Analyze GRPO under the same framework:

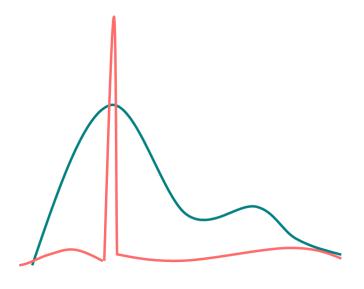
$$\mathcal{J}_{\text{GRPO}}(\theta; \gamma_{i,l}) = \frac{1}{G} \sum_{i=1}^{G} \frac{1}{|y_i|} \sum_{l=1}^{|y_i|} \left[ \min\left(\gamma_{i,l} A_{i,l}, \operatorname{clip}(\gamma_{i,l}, 1 - \epsilon, 1 + \epsilon) A_{i,l}\right) - \beta \mathbb{D}_{\text{KL}}(\pi_{\theta} || \pi_{\text{ref}}) \right]$$

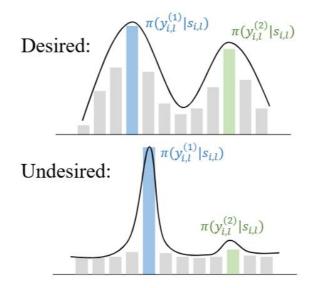
$$\nabla_{\theta} A_{i,l} \gamma_{i,l} = A_{i,l} \frac{\pi_{\theta}(y_{i,l}|s_{i,l})}{\pi_{\text{ref}}(y_{i,l}|s_{i,l})} \nabla_{\theta} \log \pi_{\theta}(y_{i,l}|s_{i,l}) = \underbrace{A_{i,l} \cdot \text{sg}(\gamma_{i,l})}_{\text{Constant}} \cdot \underbrace{\nabla_{\theta} \log \pi_{\theta}(y_{i,l}|s_{i,l})}_{\text{Same with G-term Equivalent LR}}$$



#### RLVR hurts exploration ability

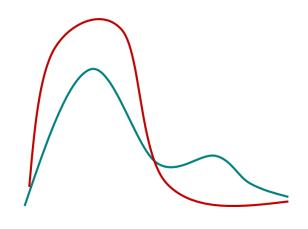


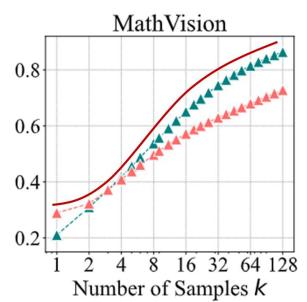




## **Application: Improve Exploration in GRPO**

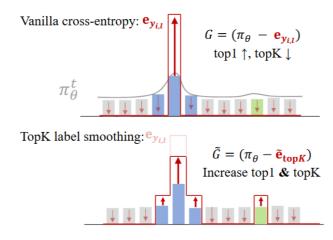
How to achieve this?

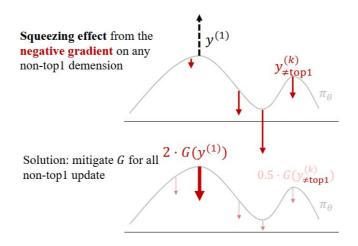




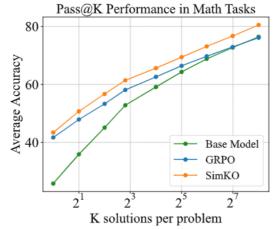
- Simple method inspired by learning dynamics
  - $\checkmark$  For  $A_i > 0$ , label smoothing

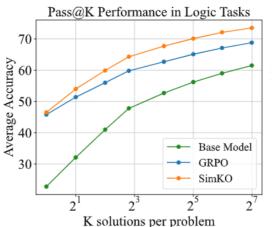
✓ For  $A_i$  < 0, penalize top1



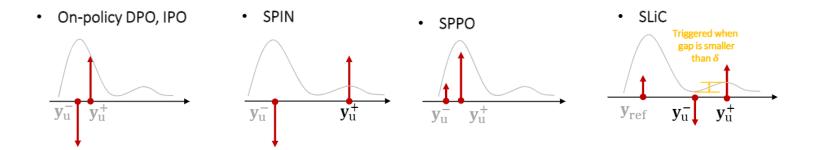


#### SimKO results



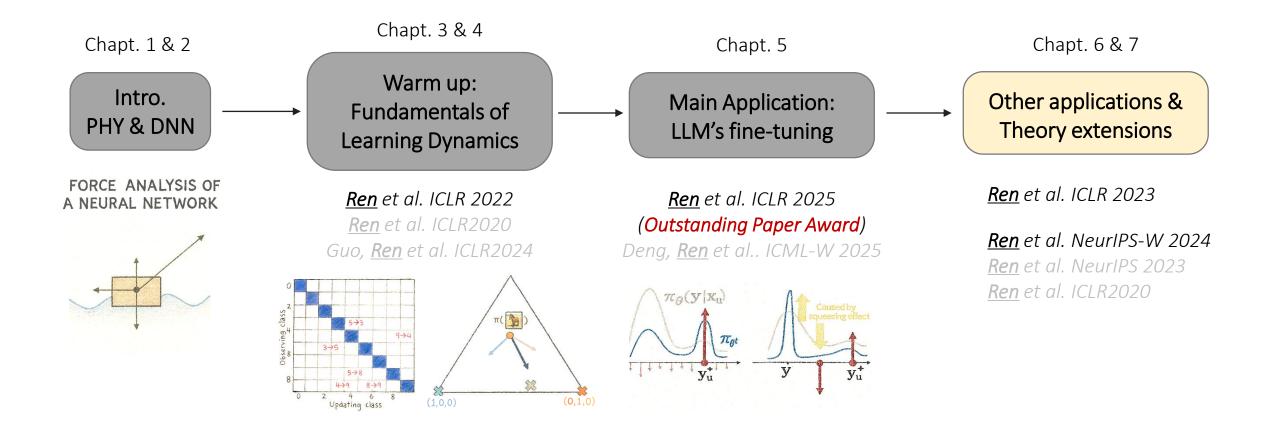


#### **LLM Finetuning: summary**



- ✓ Extension to LLM setting (assume relatively stable  $\mathcal{K}^t$ , more in paper)
- ✓ Squeezing effect on <u>negative gradient</u> (new findings in the thesis, not coved in ICLR2025 yet!)
- ✓ Can analyze various methods uniformly (working on RL-LLMs, using a similar methology)

#### **Outline**



#### HOW TO PREPARE YOUR TASK HEAD FOR FINETUNING

Yi Ren

University of British Columbia renyi.joshua@gmail.com

Wonho Bae

University of British Columbia whbae@cs.ubc.ca

Shangmin Guo

University of Edinburgh s.quo@ed.ac.uk

Danica J. Sutherland

University of British Columbia & Amii

dsuth@cs.ubc.ca

Understanding Simplicity Bias towards Compositional
Mappings via Learning Dynamics

NeurIPS Workshop – 2024 Chapter 7

ICLR - 2023

Chapter 6

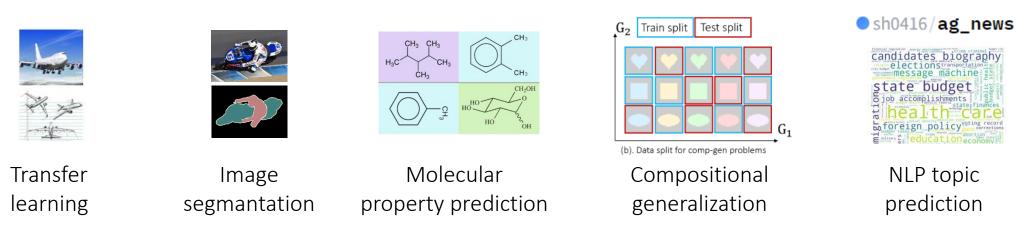
Yi Ren University of British Columbia renyi.joshua@gmail.com Danica J. Sutherland University of British Columbia & Amii dsuth@cs.ubc.ca

## Chapter 6: understanding general feature adaptation

$$x \to h_{\theta} \xrightarrow{h} g_{\phi} \to z \to \sigma(\cdot) \to \eta \xrightarrow{p} \mathcal{L}(p, e_{y})$$

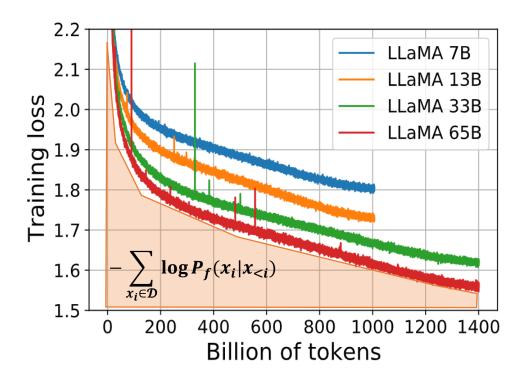
$$h_{o}^{t+1} - h_{o}^{t} = -\eta \frac{1}{N} \sum_{n=1}^{N} \left( \underbrace{\mathcal{K}^{t}(\mathbf{x}_{o}, \mathbf{x}_{u})}_{\text{slow-change}} \underbrace{(\nabla_{\mathbf{h}} \mathbf{z}^{t}(\mathbf{x}_{u}))^{\top}}_{\text{direction}} \underbrace{(\mathbf{p}^{t}(\mathbf{x}_{u}) - \mathbf{e}_{y_{n}})}_{\text{energy}} \right) + \mathcal{O}(\eta^{2})$$

 Applying this decomposition to depict how features evolves during training in various deep learning systems:



#### **Chapter 7: understanding simplicity bias**

"Compression for AGI" claimed by OpenAI (learn faster ←→ better model)



Why does this happen spontaneously?

We provide a novel explanation (in a simple setting):

Good mappings cooperate Bad mappings contradict

It can also explain many related phenomena:

THINKING GENERALIZATION Clean data learns faster

than noisy labels



A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms

## Causal data learns faster than anti-causal

## Thanks for your attention Q & A



